Skip to main content

Radioligand Binding Studies of Agonist Interactions with Dopamine Receptors

  • Chapter
Dopamine Receptor Agonists

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

Since 1975, the elegantly simple radioligand binding technique has allowed direct examination of neurotransmitter and drug interactions with dopamine receptors. The simplification obtained through elimination of factors such as alteration of neurotransmitter synthesis or other regulators of dopamine’s second messenger systems is the chief advantage of this approach to the study of receptor biochemistry and pharmacology. This simplification, however, also presents a major challenge—to demonstrate that the binding sites identified in vitro have functional relevance in the physiological milieu. It is a task of utmost importance, and often of considerable difficulty, to demonstrate that receptor binding sites can be clearly associated with some biological function. Although problems remain, this correspondence between binding sites and their function, on both the behavioral and biochemical level, is steadily being established for the dopamine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, H. S., Gardner, E., and Makman, M. H., 1979, Anterior pituitary adenylate cyclase: Stimulation by dopamine and other monoamines, Eur. J. Pharmacol. 53:313–317.

    Article  PubMed  CAS  Google Scholar 

  • Bach, N. J., Kornfeld, E. C, Jones, N. D., Chaney, M. D., Dorman, D. E., Paschal, J. W., Clemens, J. A., and Smalstig, E. B., 1980, Bicyclic and tricyclic ergoline partial structures. Rigid 3-(2-aminoethyl) pyrazoles and 3-and 4-(2-aminoethyl) pyrazoles as dopamine agonists, J. Med. Chem. 23:481–491.

    Article  PubMed  CAS  Google Scholar 

  • Bacopolous, N. G., 1981, Acute changes in the State of dopamine receptors; in vitro monitoring with 3H-dopamine, Life Sci. 29:2407–2414.

    Article  Google Scholar 

  • Bannon, M. J., Grace, A. A., Bunney, B. S., and Roth, R. H., 1980, Evidence for an irreversible interaction of bromoeryptine with central dopamine receptors, Naunyn Schmiedebergs Arch. Pharmacol. 312:37–41.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia, G., and Titeler, M., 1981, Direct binding of 3H-lisuride to adrenergic and serotonergic receptors, Life Sci. 29:909–916.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. P., Jr., 1978, Methods in binding studies, in: Neurotransmitter Receptor Binding (H. I. Yamamura, S. J. Enna, and M. J. Kuhar, eds.), Raven Press, New York, pp. 57–90.

    Google Scholar 

  • Bethea, C. L., Ramsdell, J. S., Jatte, R. B., Wilson, C. B., and Weiner, R. I., 1982, Characterization of the dopaminergic regulation of human prolactin-secreting cells cultured on extracellular matrix, J. Clin. Endocrinol. Metab. 54:892–902.

    Article  Google Scholar 

  • Boeynaems, J. M., and Dumont, J. E., 1977, The two-step model of ligand-reeeptor interaction, Mol. Cell. Endocrinol. 7:33–47.

    Article  PubMed  CAS  Google Scholar 

  • Burt, D. R., 1978, Criteria for receptor identification, in: Neurotransmitter Receptor Binding (H. I. Yamamura, S. J. Enna, and M. J. Kuhar, eds.), Raven Press, New York, pp. 41–55.

    Google Scholar 

  • Burt, D. R., Enna, S. J., Creese, I., and Snyder, S. H., 1975, Dopamine receptor binding in the corpus striatum of mammalian brain, Proc. Natl. Acad. Sci. U.S.A. 72:4655–4659.

    Article  PubMed  CAS  Google Scholar 

  • Burt, D. R., Creese, L, and Snyder, S. H., 1976, Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes, Mol. Pharmacol. 12:800–812.

    PubMed  CAS  Google Scholar 

  • Calabro, M. A., and MacLeod, R. M., 1978, Binding of dopamine to bovine anterior pituitary gland membranes, Neuro endocrinology 25:32–46.

    CAS  Google Scholar 

  • Camerman, N., and Camerman, A., 1981, On the stereochemistry of dopaminergic ergoline derivatives, Mol. Pharmacol. 19:517–519.

    PubMed  CAS  Google Scholar 

  • Cannon, J. G., Demopoulos, B. J., Long, J. P., Flynn, J. R., and Sharabi, F. M., 1981, Proposed dopaminergic pharmacophore of lergotrile pergolide, and related ergot alkaloid derivatives, J. Med. Chem. 24:238–240.

    Article  PubMed  CAS  Google Scholar 

  • Caron, M. C, Beaulieu, M., Raymond, V., Gagne, B., Drouin, J., Lefkowitz, R. J., and Labrie, F., 1978, Dopaminergic receptors in the anterior pituitary gland: Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release, J. Biol. Chem. 253:2244–2253.

    PubMed  CAS  Google Scholar 

  • Cech, S. Y., Broaddus, W. C, and Maguire, M. E., 1980, Adenylate cyclase: The role of magnesium and other divalent cations, Mol. Cell Biochem. 33:67–92.

    Article  PubMed  CAS  Google Scholar 

  • Chang, R. S., and Snyder, S. H., 1980, Histamine H1-receptor binding sites in guinea pig brain membranes: Regulation of agonist interactions by guanine nucleotides and cations, J. Neurochem. 34:916–922.

    Article  PubMed  CAS  Google Scholar 

  • Clement-Cormier, Y. C, Heindel, J. J., and Robison, G. A., 1977, Adenylyl cyclase from a prolactin producing tumour cell: The effect of phenothiazines, Life Sci. 21:1357–1364.

    Article  PubMed  CAS  Google Scholar 

  • Creese, L, and Sibley, D. R., 1979, Radioligand binding studies: Evidence for multiple dopamine receptors, Commun. Psychopharmacol. 3:385–395.

    PubMed  CAS  Google Scholar 

  • Creese, I., and Sibley, D. R., 1981, Receptor adaptations to centrally acting drugs, Annu. Rev. Pharmacol. Toxicol. 21:357–391.

    Article  PubMed  CAS  Google Scholar 

  • Creese, L, and Snyder, S. H., 1977, Simple and sensitive radioreceptor assay for antischizophrenic drugs in blood, Nature 270:180–182.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., and Snyder, S. H., 1978, Dopamine receptor binding of 3H-ADTN (2-amino-6,7-dihydroxy-l,2,3,4-tetrahydronaphthalene) regulated by guanyl nucleotides, Eur. J. Pharmacol. 50:459–461.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., Burt, D. R., and Snyder, S. H., 1975, Dopamine receptor binding: Differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol, Life Sci. 17:993–1001.

    Article  CAS  Google Scholar 

  • Creese, I., Burt, D. R., and Snyder, S. H., 1976, Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs, Science 192:481–483.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., Schneider, R., and Snyder, S. H., 1977a, 3H-Spiroperidol labels dopamine receptors in pituitary and brain, Eur. J. Pharmacol. 46:377–381.

    Article  CAS  Google Scholar 

  • Creese, I., Burt, D. R., and Snyder, S. H., 1977b, Dopamine receptor binding enhancement aecompanies lesion-induced behavioral supersensitivity, Science 197:596–598.

    Article  CAS  Google Scholar 

  • Creese, I., Burt, D. R., and Snyder, S. H., 1978a, Biochemical actions of neuroleptic drugs: focus on the dopamine receptor, in: Handbook of Psychopharmacology, Volume 10 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York, pp. 37–89.

    Google Scholar 

  • Creese, I., Padgett, L., Fazzini, E., and Lopez, F., 1979a, 3H-N-1-Propylnorapomorphine: A novel agonist ligand for central dopamine receptors, Eur. J. Pharmacol. 56:411–412.

    Article  CAS  Google Scholar 

  • Creese, I., Usdin, T. B., and Snyder, S. H., 1979b, Guanine nucleotides distinguish between two dopamine receptors, Nature 278:577–578.

    Article  CAS  Google Scholar 

  • Creese, I., Usdin, T. B. and Snyder, S. H., 1979c, Dopamine receptor binding regulated by guanine nucleotides, Mol. Pharmacol. 16:69–76.

    CAS  Google Scholar 

  • Creese, I., Stewart, K., and Snyder, S. H., 1979d, Species variations in dopamine receptor binding, Eur. J. Pharmacol. 60:55–66.

    Article  CAS  Google Scholar 

  • Creese, I., Sibley, D. R., Hamblin, M. W., and Leff, S. E., 1983, The Classification of dopamine receptors: Relationship to radioligand binding, Annu. Rev. Neurosci. 6:43–71.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, M. J., and Weiner, R. I., 1979, [3H]Spiroperidol (spiperone) binding to a putative dopamine receptor in sheep and steer pituitary and stalk median eminence, Endocrinology 104:307–312.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, M. J., Roberts, J. M., and Weiner, R. I., 1978, Dopamine and dihydroergocryptine binding to the anterior pituitary and other brain areas of the rat and sheep, Endocrinology 103:302–309.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A. J., and Owen, F., 1980, Characteristics of 3H-cis-flupenthixol binding to calf brain membranes, Eur. J. Pharmacol. 65:341–347.

    Article  PubMed  CAS  Google Scholar 

  • Dannies, P. S., Gautvik, K. M., and Tashjian, A. H., 1976, A possible role of cyclic AMP in mediating the effects of thyrotropin-releasing hormone on prolactin release and on prolactin and growth hormone synthesis in pituitary cells in culture, Endocrinology 98:1147–1159.

    Article  PubMed  CAS  Google Scholar 

  • De Camilli, P., Macconi, D., and Sdada, A., 1979, Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas, Nature 278:252–254.

    Article  PubMed  Google Scholar 

  • De Lean, A., Stadel, J. M., and Lefkowitz, R. J., 1980, A ternary complex model explains the agonist-speeifie binding properties of the adenylate cyclase-coupled beta-adrenergic receptor, J. Biol. Chem. 255:7108–7117.

    PubMed  Google Scholar 

  • Delitala, G., Yeo, T., Grossman, A., Hathway, N. R., and Besser, G. M., 1980, A comparison of the effects of four ergot derivatives on prolactin secretion by dispersed rat pituitary cells, J. Endocrinol. 87:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Fields, J. Z., Reisine, T. D., and Yamamura, H. I., 1977, Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]spiroperidol, Brain Res. 136:578–584.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, N., Saito, K., Yonehara, N., Watanabe, Y., and Yoshida, H., 1979, Binding of 3Hlisuride hydrogen maleate to striatal membranes of rat brain, Life Sci. 25:969–973.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F., 1978, Pharmacological characterization of receptors: Its relation to radioligand-binding studies,Fed. Proc. 37:115–120.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., Currodi, H., Hokfelt, T., Lidbrink, P., and Ungerstedt, U., 1974, Ergocornine and 2 Br-α-ergocryptine. Evidence for prolonged dopamine receptor stimulation, Med. Biol. 52:121–132.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., Agnati, L. F., Kohler, C., Kuonen, D., Ogren, S. 0., Anderson, K., and Hokfelt, T., 1981, Characterization of normal and supersensitive dopamine receptors: Effects of ergot drugs and neuropeptide, J. Neural Transm. 51:3–37.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sainz, J. A., Li, S. Y., and Fain, J. N., 1981, Alpha2 adrenergic amines, adenosine and Prostaglandins inhibit lipolysis and cyclic AMP accumulation in hamster adipocytes in the absence of extracellular sodium, Life Sci. 28:401–406.

    Article  PubMed  CAS  Google Scholar 

  • Giannattasio, G., De Ferrari, M. E., and Spada, A., 1981, Dopamine-inhibited adenylate cyclase in female rat adenohypophysis, Life Sci. 28:1605–1612.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., and Hornung, R., 1980, Alpha-adrenoreceptors in rat brain: Sodium changes the affinity of agonists for prazosin sites, Eur. J. Pharmacol. 61:407–408.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith, P. C, Cronin, M, J., and Weiner, R. I., 1979, Dopamine receptor sites in the anterior pituitary, J. Histochem. Cytochem. 27:1205–1207.

    Article  PubMed  CAS  Google Scholar 

  • Gorissen, H., and Laduron, P., 1979, Solubilisation of high-affinity dopamine receptors, Nature 279:72–74.

    Article  PubMed  CAS  Google Scholar 

  • Gorissen, H., Ilien, B., Aerts, G., and Laduron, P., 1980, Differentiation of solubilized dopamine receptors from spirodecanone binding sites in rat striatum, FEBS Lett. 121:133–138.

    Article  PubMed  CAS  Google Scholar 

  • Hamblin, M., and Creese, I., 1982a, Phenoxybenzamine treatment differentiates dopaminergic 3H-ligand binding sites in bovine caudata membranes, Mol. Pharmacol. 21:44–51.

    CAS  Google Scholar 

  • Hamblin, M. W., and Creese, I., 1982b, 3H-Dopamine binding to rat striatal D-2 and D-3 sites: Enhancement by magnesium and inhibition by sodium, Life Sci. 30:1587–1595.

    Article  CAS  Google Scholar 

  • Heidenreich, K. A., Weiland, G. A., and Molinoff, P. B., 1980, Characterization of radiolabeled agonist binding to β-adrenergic receptors in mammalian tissues, J. Cyclic Nucleotide Res. 6:217–230.

    PubMed  CAS  Google Scholar 

  • Heidenreich, K. A., Weiland, G. A., and Molinoff, P. B., 1982, Effects of magnesium and N-ethylmaleimide on the binding of 3H-hydroxybenzylisoproterenol to β-adrenergic receptors, J. Biol. Chem. 257:804–810.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. B., and Lefkowitz, R. J., 1980, Radioligand binding studies of adrenergic receptors: New insights into molecular and physiological regulation, Annu. Rev. Pharmacol. Toxicol. 20:581–608.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B. B., Michel, T., Brenneman, T. B., and Lefkowitz, R. J., 1982, Interactions of agonists with platelet α2-adrenergic receptors, Endocrinology 110:926–932.

    Article  PubMed  CAS  Google Scholar 

  • Howlett, D. R., and Nahorski, S. R., 1978, A comparative study of [3H]haloperidol and [3H]spiroperidol binding to receptors on rat cerebral membranes, FEBS Lett. 87:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel, J., 1978a, A comparison of the effect of neuroleptic drugs on the binding of 3Hhaloperidol and 3H-cis(Z)-flupenthixol and on adenylate cyclase activity in rat striatal tissue in vitro, Prog. Neuropsychopharmacol. 2:329–335.

    Article  CAS  Google Scholar 

  • Hyttel, J., 1978b, Effects of neuroleptics on 3H-haloperidol and 3H-cis(Z)-flupenthixol binding and on adenylate cyclase activity in vitro, Life Sci. 23:551–555.

    Article  CAS  Google Scholar 

  • Hyttel, J., 1980, Further evidence that 3H-cis(Z)flupenthixol binds to the adenylate cyclaseassociated dopamine receptor (D-1) in rat corpus striatum, Psychopharmacology 67:107–109.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel, J., 1981, Similarities between the binding of 3H-piflutixol and 3H-flupentixol to rat striatal dopamine receptors in vitro, Life Sci. 28:563–569.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, S., and Cuatrecasas, P., 1976, The mobile receptor hypothesis and “cooperativity” of hormone binding application to insulin, Biochim. Biophys. Acta 433:482–495.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Kent, R. S., De Lean, A., and Lefkowitz, R. J., 1980, A quantitative analysis of betaadrenergic receptor interactions: Resolution of high and low affinity states of the receptor by Computer modeling of ligand binding data, Mol. Pharmacol. 17:14–23.

    PubMed  CAS  Google Scholar 

  • Komiskey, H. L., Bossart, J. F., Miller, D. D., and Patil, P. N., 1978, Conformation of dopamine at the dopamine receptor, Proc. Natl. Acad. Sci. U.S.A. 75:2641–2643.

    Google Scholar 

  • Korner, M., Gilon, C, and Schramm, M., 1982, Locking of hormone in the β-adrenergic receptor by attack on a sulfhydryl in an associated component, J. Biol. Chem. 257:3389–3396.

    PubMed  CAS  Google Scholar 

  • LaBrie, F., Ferland, L., DiPaolo, T., and Veilleux, R., 1980, Modulation of prolactin secretion by sex Steroids and thyroid hormones, in: Central and Peripheral Regulation of Prolactin Function (R. M. MacLeod and U. Scapagnini, eds.), Raven Press, New York, pp. 97–113.

    Google Scholar 

  • Lad, P. M., Nielsen, T. B., Preston, M. S., and Rodbell, M., 1980, The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and choleratoxin on adenylate cyclase in turkey erythrocyte membranes, J. Biol. Chem. 255:988–995.

    PubMed  CAS  Google Scholar 

  • Larsen, N. E., Mullikin-Kilpatrick, K., and Blume, A. J., 1981, Two different modifications of the neuroblastoma x glioma hybrid opiate receptors induced by N-ethylmaleimide, Mol. Pharmacol. 20:255–262.

    PubMed  CAS  Google Scholar 

  • Leff, S. E., and Creese, I., 1982, Solubilization of D-2 dopamine receptors from canine caudate: Agonist-occupation stabilizes guanine nucleotide sensitive receptor complexes, Biochem. Biophys. Res. Commun. 108:1150–1157.

    Article  PubMed  CAS  Google Scholar 

  • Leff, S. E., and Creese, I., 1983, Dopaminergic D-3 sites are postsynaptic, Nature 306:586–589.

    Article  PubMed  CAS  Google Scholar 

  • Leff, S., Adams, L., Hyttel, J., and Creese, I., 1981, Kainate lesion dissociates striatal dopamine receptor radioligand binding sites, Eur. J. Pharmacol. 70:71–75.

    Article  PubMed  CAS  Google Scholar 

  • Leff, S. E., Hamblin, M. W., and Creese, L, 1982, Acute reserpine mimics the effects of nigrostriatal 6-hydroxydopamine lesions on “D-3” specific 3H-dopamine binding in rat striatum, Soc. Neurosci. Abstr. 8:717.

    Google Scholar 

  • Lefkowitz, R. J., 1980, Modification of adenylate cyclase activity by alpha and beta-adrenergic receptors: Insights from radioligand binding studies, in: Psychopharmacology and Biochemistry of Neurotransmitter Receptors (H. I. Yamamura, R. W. Olsen, and E. Usdin, eds.), Elsevier Press, New York, pp. 155–170.

    Google Scholar 

  • Lefkowitz, R. J., and Williams, L. T., 1977, Catecholamine binding to the beta-adrenergic receptor, Proc. Natl. Acad. Sci. U.S.A. 74:515–519.

    Article  PubMed  CAS  Google Scholar 

  • Levitski, A., 1978, The mode of coupling of adenylate cyclase to hormone receptors and its modulation by GTP, Biochem. Pharmacol. 27:2083–2088.

    Article  Google Scholar 

  • Leysen, J. E., Gommeren, W., and Laduron, P. M., 1978, Spiperone: A ligand of choice for neuroleptic receptors. I. Kinetics and characteristics of in vitro binding, Biochem. Pharmacol. 27:307–316.

    Article  PubMed  CAS  Google Scholar 

  • Limbird, L. E., 1981, Activation and attenuation of adenylate cyclase. The role of GTPbinding proteins as macromolecular messengers in receptor-cyclase coupling, Biochem. J. 195:1–13.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E., Gill, D. M., and Lefkowitz, R. J., 1980, Agonist-promoted coupling of the beta-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. U.S.A. 77:775–779.

    Article  PubMed  CAS  Google Scholar 

  • List, S., Titeler, M., and Seeman, P., 1980, High-affinity 3H-dopamine receptors (D3 sites) in human and rat brain, Biochem. Pharmacol. 29:1621–1622.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, R. M., Nagy, I., Login, I. S., Kimura, H., Valdenegro, C. A., and Thorner, M. 0., 1980, The role of dopamine, cAMP, and calcium in prolactin secretion, in: Central and Peripheral Regulation of Prolactin Function (R. M. MacLeod and U. Scapaagnini, eds.), Raven Press, New York, pp. 27–41.

    Google Scholar 

  • Madras, B. K., Davis, A., Kunashko, P., and Seeman, P., 1980, Solubilization of dopamine receptors from dog and human brains, in: Psychopharmacology and Biochemistry of Neurotransmitter Receptors (H. I., Yamamura, R. W. Olsen, and E. Usdin, eds.), Elsevier/North-Holland, New York, pp. 411–419.

    Google Scholar 

  • Markstein, R., 1981, Neurochemical effects of some ergot derivatives: A basis for their antiparkinson action, J. Neural Transm. 51:39–59.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, H., and Labrie, F., 1982, The dopamine receptor in the intermediate lobe of the rat pituitary gland is negatively coupled to adenylate cyclase, Life Sci. 30:963–968.

    Article  PubMed  CAS  Google Scholar 

  • Mowles, T. F., Burghardt, B., Burghardt, C., Charneki, A., and Sheppard, H., 1978, The dopamine receptor of the rat mammotroph in cell culture as a model for drug action, Life Sci. 22:2103–2112.

    Article  PubMed  CAS  Google Scholar 

  • Muller, E. E., Panerai, A. E., Cocchi, D., and Mantegazza, P., 1977, Endocrine profile of ergot alkaloids, Life Sci. 21:1545–1558.

    Article  PubMed  CAS  Google Scholar 

  • Munemura, M., Eskay, R. L., and Kebabian, J. W., 1980a, Release of α-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: Involvement of catecholamines and adenosine 3’5’-monophosphate, Endocrinology 106:1795–1803.

    Article  CAS  Google Scholar 

  • Munemura, M., Cote, T. E., Tsuruta, K., Eskay, R. L., and Kebabian, J. W., 1980b, The dopamine receptor in the intermediate lobe of the rat pituitary gland: Pharmacological characterization Endocrinology 107:1676–1683.

    Article  CAS  Google Scholar 

  • Munson, P. J., and Rodbard, D., 1980, Ligand: A versatile computerized approach for characterization of ligand-binding systems, Anal. Biochem. 107:220–239.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J. I., Lee, T., Seeman, P., and Fibiger, H. C, 1978, Direct evidence for presynaptic and postsynaptic dopamine receptors in brain, Nature 274:278–281.

    Article  PubMed  CAS  Google Scholar 

  • Naor, Z., Snyder, G., Fawcett. C. P., and McCann, S. M., 1980, Pituitary cyclic nucleotides and thyrotropin-releasing hormone action: The relationship of adenosine 3’,5’-monophosphate and guanosine 3’5’-monophosphate to the release of thyrotropin and prolactin, Endocrinology 106:1304–1310.

    PubMed  CAS  Google Scholar 

  • Onali, P., Schwartz, J. P., and Costa, E., 1981, Dopaminergic modulation of adenylate cyclase Stimulation of vasoactive intestinal peptide (VIP) in anterior pituitary, Proc. Natl. Acad. Sci. U.S.A. 78:6531–6534.

    Article  PubMed  CAS  Google Scholar 

  • Pardo, J. V., Creese, I., Burt. D. R., and Snyder, S. H., 1977, Ontogenesis of dopamine receptor binding in the corpus striatum of the rat. Brain Res. 125:376–382.

    Article  PubMed  CAS  Google Scholar 

  • Pawlikowski, M., Karasek, E., Kunert-Radek, J., and Stepien, H., 1979, Dopamine blockade of the thyroliberin-induced cyclic AMP accumulation in rat anterior pituitary, J. Neural Transm. 45:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Pawlikowski, M., Karasek, E., Kunert-Radek, J., and Jaranowska, M., 1981, Effects of dopamine on cyclic AMP concentration in the anterior pituitary gland in vitro, J. Neural Transm. 50:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Pert, C. B., Pasternak, G., and Snyder, S. H., 1973, Opiate agonists and antagonists discriminated by receptor binding in brain, Science 182:1359–1361.

    Article  PubMed  CAS  Google Scholar 

  • Quik, M., and Iversen, L. L., 1979, Regional study of 3H-spiperone binding and the dopamine-sensitive adenylate cyclase in rat brain, Eur. J. Pharmacol. 56:323–330.

    Article  PubMed  CAS  Google Scholar 

  • Ray, K. P., and Wallis, M., 1980, Is cyclic adenosine 3’:5’-monophosphate involved in the dopamine-mediated inhibition of prolactin secretion?, J. Endocrinol. 85:59p.

    CAS  Google Scholar 

  • Reynolds, G. P., and Riederer, P., 1981, The effects of lisuride and some other dopaminergic agonists on receptor binding in human brain, J. Neural Transm. 51:107–111.

    Article  PubMed  CAS  Google Scholar 

  • Rutschmann, J., and Stadler, P. A., 1978, Chemical background, in: Ergot Alkaloids and Related Compounds (B. Berde and H. 0. Schild, eds.), Springer-Verlag, New York, pp. 29–78.

    Chapter  Google Scholar 

  • Schachter, M., Bedard, P., Debono, A. G., Jenner, P., Marsden, C. D., Price, P., Parkes J. D., Keenan, J. Smith, B., Rosenthaler, J., Horowski, R., and Dorow, R., 1980, The role of D-1 and D-2 receptors, Nature 286:157–159.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M. J., and Hill, L. E., 1977, Effects of ergots on adenylate cyclase activity in the corpus striatum and pituitary, Life Sci. 20:789–798.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Creese, I., Coyle, J. T., and Snyder, S. H., 1978, Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum, Nature 271:766–768.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32:229–313.

    PubMed  CAS  Google Scholar 

  • Seeman, P., Chau-Wong, M., Tedesco, J., and Wong, K., 1975, Brain receptors for antipsychotic drugs and dopamine: Direct binding assays, Proc. Natl. Acad. Sci. U.S.A. 72:4376–4380.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., Lee, T., Chau-Wong, M., Tedesco, J., and Wong, K., 1976a, Dopamine receptors in human and calf brains, using [3H]apomorphine and an antipsychotic drug, Proc. Natl. Acad. Sci. U.S.A. 73:4354–4358.

    Article  CAS  Google Scholar 

  • Seeman, P., Lee, T., Chau-wong, M., and Wong, K., 1976b, Antipsychotic drug doses and neuroleptic/dopamine receptors, Nature 261:717–719.

    Article  CAS  Google Scholar 

  • Seeman, P., Woodruff, G. N., and Poat, J. A., 1979, Similar binding of 3H-ADTN and 3Hapomorphine to calf brain dopamine receptors, Eur. J. Pharmacol. 55:137–142.

    Article  PubMed  CAS  Google Scholar 

  • Shaar, C. J., and Clemens, J. A., Inhibition of lactation and prolactin secretion in rats by ergot alkaloids, 1972, Endocrinology 90:285–288.

    Article  PubMed  CAS  Google Scholar 

  • Shane, E., Gammon, D. E., and Bilezikian, J. P., 1981, Guanine nucleotide-induced shift in binding affinity for beta-adrenergic agonists in rat reticulocyte and turkey erythrocyte membranes, Biochem. Pharmacol. 30:531–535.

    Article  PubMed  CAS  Google Scholar 

  • Sibley, D. R., and Creese, I., 1979, Multiple pituitary dopamine receptors: Effects of guanine nucleotides, Soc. Neurosci. Abstr. 5:352.

    Google Scholar 

  • Sibley, D. R., and Creese, I., 1982, Anterior pituitary dopamine receptors: Demonstration of interconvertible high and low affinity states of D-2 dopamine receptor, J. Biol. Chem. 257:6351–6361.

    PubMed  CAS  Google Scholar 

  • Sibley, D. R., and Creese, I., 1983a, Regulation of ligand binding to pituitary D-2 dopaminergic receptors: Effects of divalent cations and functional group modification, J. Biol. Chem. 258:4957–4965.

    CAS  Google Scholar 

  • Sibley, D. R., and Creese, I., 1983b, Interactions of ergot alkaloids with anterior pituitary D-2 dopamine receptors, Mol. Pharmacol. 23:585–593.

    CAS  Google Scholar 

  • Sibley, D. R., Leff, S. E., and Creese, I., 1982, Interactions of novel dopaminergic ligands with D-1 and D-2 dopamine receptors, Life Sci. 31:637–645.

    Article  PubMed  CAS  Google Scholar 

  • Sibley, D. R., Mahan, L. C, and Creese, I., 1983, Dopamine receptor binding on intact cells: Absence of high affinity agonist-receptor binding state, Mol. Pharmacol. 23:295–302.

    PubMed  CAS  Google Scholar 

  • Smith, S. K., and Limbird, L. E., 1982, Apparent independence of the alpha-adrenergic receptor (α-AR) of the human platelet from the adpribosylated 42,000 Mr subunit of the adenylate cyclase system, Fed. Proc. 41:899.

    Google Scholar 

  • Sokoloff, P., Martres, M.-P., and Schwartz, J.-C, 1980a, 3H-Apomorphine labels both dopamine postsynaptic receptors and autoreceptors, Nature 288:283–286.

    Article  CAS  Google Scholar 

  • Sokoloff, P., Martres, M. P., and Schwartz, J. C, 1980b, Three classes of dopamine receptor (D-2, D-3, D-4) identified by binding studies with 3H-apomorphine and 3H-domperidone, Naunyn Schmiedebergs Arch. Pharmacol. 315:89–102.

    Article  CAS  Google Scholar 

  • Stefanini, E., Dejoto, P., Marchisio, A., Vernaleone, F., and Collu, R., 1980, [3H]Spiroperidol binding to a putative dopaminergic receptor in rat pituitary gland, Life Sci. 26:583–587.

    Article  PubMed  CAS  Google Scholar 

  • Tamminga, C. A., and Schaffer, M. H., 1979, Treatment of schizophrenia with ergot derivatives, Psychopharmacology 66:239–242.

    Article  PubMed  CAS  Google Scholar 

  • Thal, L., Creese, I., and Snyder, S. H., 1978,3H-Apomorphine interactions with dopamine receptors in calf brain, Eur. J. Pharmacol. 49:295–299.

    Article  PubMed  CAS  Google Scholar 

  • Titeler, M., and Seeman, P., 1978, Antiparkinsonian drug doses and neuroleptic 34:1490–1492.

    CAS  Google Scholar 

  • Titeler, M., and Seeman, P., 1979, Selective labeling of different dopamine receptors by a new agonist 3H-ligand: 3H-N-propylnorapomorphine, Eur. J. Pharmacol. 56:291–292.

    Article  PubMed  CAS  Google Scholar 

  • Titeler, M., Weinreich, P., Sinclair, D., and Seeman, P., 1978, Multiple receptors for brain dopamine, Proc. Natl. Acad. Sci. U.S.A. 75:1153–1156.

    Article  PubMed  CAS  Google Scholar 

  • Titeler, M., List, S., and Seeman, P., 1979, High affinity dopamine receptors (D3) in rat brain, Commun. Psychopharmacol. 3:411–420.

    PubMed  CAS  Google Scholar 

  • Tsai, B. S., and Lefkowitz, R. J., 1978, Agonist-specific effects of monovalent and divalent cations on adenylate cyclase-coupled alpha adrenergic receptors in rabbit platelets, Mol. Pharmacol. 14:540–548.

    PubMed  CAS  Google Scholar 

  • Tsurata, K., Frey, E. A., Grewe, C. W., Cote, T. E., Eskay, R. L., and Kebabian, J. W., 1981, Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor, Nature 292:463–465.

    Article  Google Scholar 

  • Usdin, T. B., Creese, I.. and Snyder, S. H., 1980, Regulation by cations of 3H-spiroperidol binding associated with dopamine receptors of rat brain, J. Neurochem. 34:669–676.

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin, G., and Maguire, M. E., 1980, Mol. Pharmacol. 18:362–369.

    PubMed  CAS  Google Scholar 

  • Vauquelin, G., Bottari, S., Kanarek, L., and Strosberg, A. D., 1979, Evidence for essential disulfide bonds in βi-adrenergic receptors of turkey erythrocyte membranes, J. Biol. Chem. 254:4462–4469.

    PubMed  CAS  Google Scholar 

  • Vauquelin, G., Bottari, S., and Strosberg, A. D., 1980a, Inactivation of β-adrenergic receptors by N-ethylmaleimide: Permissive role of β-adrenergic agents in relation to adenylate cyclase activation, Mol. Pharmacol. 17:163–171.

    CAS  Google Scholar 

  • Vauquelin, G., Bottari, S., Andre, C, Jacobson, B., and Strosberg, A. D., 1980b, Interaction between β-adrenergic receptors and guanine nucleotide sites in turkey erythrocyte membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3801–3805.

    Article  CAS  Google Scholar 

  • Weber, H. P., 1980, The molecular architecture of ergopeptines: A basis for biological interaction, in: Ergot Compounds and Brain Function: Neuroendocrine and Neuropsychiatric Aspects (M. Goldstein, D. B. Calne, A. Lieberman, and M. Thorner, eds.), Raven Press, New York, pp. 25–34.

    Google Scholar 

  • Weiner, W. J., Goetz, C. G., Nausieda, P. A., and Klawans, H. L., 1979, Amphetamineinduced hypersensitivity in guinea pigs, Neurology (N.Y.) 29:1054–1057.

    Article  CAS  Google Scholar 

  • Williams, L. T., and Lefkowitz, R. J., 1977, Slowly reversible binding of catecholamine to a nucleotide-sensitive State of the beta-adrenergic receptor, J. Biol. Chem. 252:7207–7213.

    PubMed  CAS  Google Scholar 

  • Yeo, T., Thorner, M. 0., Jones, A., Lowry, P. J., and Besser, G. M., 1979, The effects of dopamine, bromocriptine, lergotrile and metoclopramide on prolactin release from continuously perfused columns of isolated rat pituitary cells, Clin. Endocrinol. 10:123–130.

    Article  CAS  Google Scholar 

  • Zahniser, N. R., and Molinoff, P. B., 1978, Effect of guanine nucleotides on striatal dopamine receptors, Nature 275:453–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Creese, I., Leff, S.E., Sibley, D.R., Hamblin, M.W. (1984). Radioligand Binding Studies of Agonist Interactions with Dopamine Receptors. In: Poste, G., Crooke, S.T. (eds) Dopamine Receptor Agonists. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0310-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0310-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0312-2

  • Online ISBN: 978-1-4757-0310-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics