Skip to main content

Hemodynamic Factors Involved in the Regulation of Sodium Balance

  • Chapter
Dopamine Receptor Agonists

Part of the book series: New Horizons in Therapeutics ((NHTH))

  • 100 Accesses

Abstract

Sodium salts constitute more than 90% of the total solute contained in extracellular fluid. Therefore, the content of the extracellular fluid volume is dependent on the regulation of sodium balance. Since sodium salts are excreted primarily by the kidney, it follows that the regulation of sodium balance will be determined by the relationship between sodium intake and the renal handling of sodium. In this chapter I briefly review the factors involved in the renal handling of sodium, emphasize how hemodynamic alterations may play a major regulatory role in the system, and, last, discuss the possible role of the dopaminergic receptor in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreoli, T. E., and Schafer, J. A., 1979, External Solution driving forces for isotonic fluid absorption in proximal tubules, Fed. Proc. 38:154–160.

    PubMed  CAS  Google Scholar 

  • Barajas, L., 1978, Innervation of the renal cortex, Fed. Proc. 37:1192–1201.

    PubMed  CAS  Google Scholar 

  • Bello-Reuss, E., 1980, Effect of catecholemines on fluid reabsorption by the isolated proximal convoluted tubule, Am. J. Physiol. 238-.F347–F352.

    PubMed  CAS  Google Scholar 

  • Bello-Reuss, E., Colindres, R. E., Pastoriza-Munoz, E., Mueller, R. A., and Gottschalk, C. W., 1975, Effects of acute unilateral renal denervation in the rat, J. Clin. Invest. 56:208–217.

    Article  PubMed  CAS  Google Scholar 

  • Bello-Reuss, E., Higashi, Y., and Kaneda, Y., 1982, Dopamine decreases fluid reabsorption in straight portions of rabbit proximal tubule, Am. J. Physiol. 242:F634–F640.

    PubMed  CAS  Google Scholar 

  • Brenner, B. M., Troy, J. L., Daugharty, T. M., and Maclnnes, R. M., 1973, Quantitative importance of changes in postglomerular colloid osmotic pressure in mediating glomerulotubular balance in the rat, J. Clin. Invest. 52:190–197.

    Article  PubMed  CAS  Google Scholar 

  • Bresler, E. H., 1956, Problem of volume component of body fluid homeostasis, Am. J. Med. Sci. 232:93–104.

    Article  PubMed  CAS  Google Scholar 

  • Brotzu, G., 1970, Inhibition by chlorpromazine of the effects of dopamine on the dog kidney, J. Pharm. Pharmacol. 22:664–667.

    Article  PubMed  CAS  Google Scholar 

  • Burg, M. B., 1981, The renal handling of sodium chloride, water, amino acids, and glucose, in: The Kidney, 2nd ed. (B. M. Brenner and F. C. Rector, eds.), W. B. Saunders, Philadelphia, pp. 328–370.

    Google Scholar 

  • Earley, L. E., and Friedler, R. M., 1965, Changes in renal blood flow and possibly intrarenal distribution of blood during the natriuresis accompanying saline loading in the dog, J. Clin. Invest. 44:929–941.

    Article  PubMed  CAS  Google Scholar 

  • Fadem, S. Z., Hernandez-Llamas, G., Patak, R. V., Rosenblatt, S. G., Lifschitz, M. D., and Stein, J. H., 1982, Studies on the mechanism of sodium excretion during druginduced vasodilatation in the dog, J. Clin. Invest. 69:604–610.

    Article  PubMed  CAS  Google Scholar 

  • Fine, L. G., and Trizna, W., 1977, Influence of Prostaglandins on sodium transport of isolated medullary nephron segments, Am. J. Physiol. 232:F383–F390.

    PubMed  CAS  Google Scholar 

  • Goodyer, A. V. N., and Jaeger, C A., 1955, Renal response to non-shocking hemorrhage: Role of the autonomic nervous system and of the renal circulation, Am. J. Physiol. 180:69–74.

    PubMed  CAS  Google Scholar 

  • Green, R., Windhager, E. E., and Giebisch, G., 1974, Protein oncotic pressure effects on proximal tubular movement in the rat, Am. J. Physiol. 226:265–276.

    PubMed  CAS  Google Scholar 

  • Greger, R., 1981, Chloride reabsorption in the rabbit cortical thick ascending limb of Henle’s loop of rabbit kidney, Pfluegers Arch 392:92–94.

    Article  CAS  Google Scholar 

  • Gross, J. B., Imai, M., and Kokko, J. P., 1975, A functional comparison of the cortical collecting tubule and the distal convoluted tubule, J. Clin. Invest. 55:1284–1294.

    Article  PubMed  CAS  Google Scholar 

  • Haberle, D. A., Shiigai, T. T., Maier, G., Schiffl, H., and Davis, J. M., 1981, Dependency of proximal tubular fluid transport on the load of glomerular filtrate, Kidney Int. 20:18–28.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, R. A., and Wardell, J. R., Jr., 1980, Antagonism of the renal vasodilator activity of dopamine by metoclopramide, Arch. Pharmacol. 314:177–182.

    Article  CAS  Google Scholar 

  • Harris, P. I., and Young, J. A., 1977, Dose-dependent Stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney, Pfluegers Arch. 367:295–297.

    Article  CAS  Google Scholar 

  • Ichikawa, I., and Brenner, B. M., 1980, Importance of efferent arteriolar vascular tone in regulation of proximal tubule fluid reabsorption and glomerulotubular balance in the rat, J. Clin. Invest. 65:1192–1201.

    Article  PubMed  CAS  Google Scholar 

  • Imai, M., and Kokko, J., 1974, Sodium chloride, urea, and water transport in the thin ascending limb of Henle: Generation of osmotic gradients by passive diffusion of solutes, J. Clin. Invest. 53:393–402.

    Article  PubMed  CAS  Google Scholar 

  • Lameire, N. H., Lifschitz, M. D., and Stein, J. H., 1977, Heterogeneity of nephron function, Annu. Rev. Physiol. 39:159–184.

    Article  PubMed  CAS  Google Scholar 

  • Lang, W. J., and Woodman, O. L., 1982, Comparison of the vasodilator action of dopamine and dopamine agonists in the renal and coronary beds of the dog, Br. J. Pharmacol. 77:023–028. ai]Ludwig, C, 1844, Nieren und Harnbereitung, in: Handworterbuch der Physiologie, Volume 2 (Wanger, ed.), Vieweg & Sohn, Braunschweig, p. 628.

    Google Scholar 

  • McDonald, R. H., Jr., Goldberg, L. I., McNay, J. L., and Tuttle, E. P., Jr., 1964, Effects of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow, J. Clin. Invest. 43:1116–1124.

    Article  PubMed  CAS  Google Scholar 

  • Osgood, R. W., Reineck, H. J., and Stein, J. H., 1978, Further studies on segmental sodium transport in the rat kidney during expansion of the extracellular fluid volume, J. Clin. Invest. 64:311–320.

    Article  Google Scholar 

  • Reineck, H. J., and Parma, R., 1982, Effect of medullary tonicity on urinary sodium excretion in the rat, J. Clin. Invest. 69:971–978.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, J. D., Papper, S., and Ashley, M. M., 1959, Variations on renal excretion of sodium independent of change in adrenocortical hormone dosage in patients with Addison’s disease, J. Clin. Endocrinol. Metab. 15:1459–1474.

    Article  Google Scholar 

  • Starling, E. H., 1908, in: The Fluids of the Body (Keener, ed.), Chicago.

    Google Scholar 

  • Stein, J. H., Osgood, R. W., and Kunau, R. T., Jr., 1976, Direct measurement of papillary collecting duct sodium transport in the rat, J. Clin. Invest. 58:767–773.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, J. B., 1979, Effect of Prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle, J. Clin. Invest. 64:495–502.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, J. B., and Kokko, J. P., 1977, Inhibition of sodium transport by Prostaglandin E2 across the isolated, perfused rabbit collecting tubule, J. Clin. Invest. 59:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Thorburn, G. D., Kopald, H. H., Herd, J. A., Hollenberg, M., O’Morchoe, C. C. C, and Barger, A. C, 1963, Intrarenal distribution of nutrient blood flow determined with krypton85 in the unanesthetized dog, Circ. Res. 13:290–307.

    Article  PubMed  CAS  Google Scholar 

  • Wardener, H. E. de, Mills, I. H., Clapham, W. F., and Hayter, C. J., 1961, Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog, Clin. Sci. 21:249–264.

    Google Scholar 

  • Whittembury, G. F., Rawlins, F. A., and Boulpaep, E. L., 1973, Paracellular pathway in kidney tubules: Electrophysiological and morphological evidence, in: Transport Mechanisms in Epithelia (H.H. Ussing and N. A. Thorn, eds.), Academic Press, New York, pp. 577–595.

    Google Scholar 

  • Yeh, B. K., McNay, J. L., and Goldberg, L. I., 1969, Attenuation of dopamine renal and mesenteric vasodilatation by haloperidol: Evidence for a specific dopamine receptor, J. Pharmacol. Exp. Ther. 168:303–309.

    PubMed  CAS  Google Scholar 

  • Zambraski, E. J., and DiBona, G. F., 1976, Angiotensin II in antinatriuresis of low-level renal nerve stimulation, Am. J. Physiol. 231:1105–1110.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Stein, J.H. (1984). Hemodynamic Factors Involved in the Regulation of Sodium Balance. In: Poste, G., Crooke, S.T. (eds) Dopamine Receptor Agonists. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0310-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0310-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0312-2

  • Online ISBN: 978-1-4757-0310-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics