Skip to main content

Molecular Mechanisms of Vasodilatation

  • Chapter
Dopamine Receptor Agonists

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

The mechanisms by which chemical substances relax vascular smooth muscle have received considerable attention in recent years. These vasodilators include β-adrenergic receptor agonists, muscarinic receptor agonists, dopamine receptor agonists, certain autacoids, calcium antagonists, nucleosides, nucleotides, and nitrogen oxide-containing agents. This chapter deals primarily with the latter agents, which include organic nitrates and nitrites, inorganic nitrites, nitroso Compounds, S-nitrosothiols, and nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, R., Nilsson, K., Wikberg, J., Johansson, S., Mohme-Lundholm, E., and Lundholm, L., 1975, Cyclic nucleotides and the contraction of smooth muscle, Adv. Cyclic Nucleotide Res. 5:491–518.

    PubMed  CAS  Google Scholar 

  • Armstrong, J. A., Marks, G. S., and Armstrong, P. W., 1980, Absence of metabolite formation during nitroglycerin-induced relaxation of isolated blood vessels, Mol. Pharmacol. 18:112–116.

    PubMed  CAS  Google Scholar 

  • Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F., 1977a, Nitric oxide activates guanylate cyclase and increases guanosine 3’,5”-cyclic monophosphate levels in various tissue preparations, Proc. Natl. Acad. Sci. U.S.A. 74:3203–3207.

    Article  CAS  Google Scholar 

  • Arnold, W. P., Aldred, R., and Murad, F., 1977b, Cigarette smoke activates guanylate cyclase and increases guanosine 3’,5’-monophosphate in tissues, Science 198:934–936.

    Article  CAS  Google Scholar 

  • Axelsson, K. L., Wikberg, J. E. S., and Andersson, R. G. G., 1979, Relationship between nitroglycerin, cyclic GMP and relaxation of vascular smooth muscle, Life Sci. 24:1779–1786.

    Article  PubMed  CAS  Google Scholar 

  • Axelsson, K. L., Andersson, R. G. G., and Wikberg, J. E. S., 1982, Vascular smooth muscle relaxation by nitro Compounds: Reduced relaxation and cyclic GMP elevation in tolerant vessels and reversal of tolerance by dithiothreitol, Acta Pharmacol. Toxicol. 50:350–357.

    Article  CAS  Google Scholar 

  • Böhme, E., Graf, H., and Schultz, G., 1978, Effects of sodium nitroprusside and other smooth muscle relaxants on cyclic GMP formation in smooth muscle and platelets, Adv. Cyclic Nucleotide Res. 9:131–143.

    PubMed  Google Scholar 

  • Clyman, R. I., Sandler, J. A., Manganiello, V. C, and Vaughan, M., 1975, Guanosine 3’,5’-monophosphate and adenosine 3’,5’-monophosphate content of human umbilical artery, J. Clin. Invest. 55:1020–1025.

    Article  PubMed  CAS  Google Scholar 

  • Craven, P. A., and DeRubertis, F. R., 1978, Restoration and the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and heme proteins: Evidence for the involvement of the paramagnetic nitrosyl-heme complex in enzyme activation, J. Biol. Chem. 253:8433–8443.

    PubMed  CAS  Google Scholar 

  • Craven, P. A., DeRubertis, F. R., and Pratt, D. W., 1979, Electron spin resonance study of the role of NO-catalase in the activation of guanylate cyclase by NaN3 and NH2OH: Modulation of enzyme responses by heme protein and their nitrosyl derivatives, J. Biol. Chem. 254:8213–8222.

    PubMed  CAS  Google Scholar 

  • DeRubertis, F. R., and Craven, P. A., 1976, Calcium-independent modulation of cyclic GMP and activation of guanylate cyclase by nitrosoamines, Science 193:897–899.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J., and Blisard, K. S., 1976, Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery, Mol. Pharmacol. 12:688–692.

    CAS  Google Scholar 

  • Diamond, J., and Holmes, T. G., 1975, Effects of potassium Chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium, Can. J. Physiol. Pharmacol. 53:1099–1107.

    Article  PubMed  CAS  Google Scholar 

  • Dunham, E. W., Haddox, M. K., and Goldberg, N. D., 1974, Alteration of vein cyclic 3’,5’-nucleotide concentrations during changes in contractility, Proc. Natl. Acad. Sci. U.S.A. 71:815–819.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, J. C, Barry. B. K., Gruetter, D. Y., Ohlstein, E. H., Baricos, W. H., and Ignarro, L. J., 1981, Activation of hepatic guanylate cyclase by nitrosyl-heme complexes: Comparison of unpurified and partially purified enzyme, Biochem. Pharmacol. 30:2531–2538.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, J. C, Ignarro, L. J., Wood, K. S., Hyman, A. L., and Kadowitz, P. J., 1984, Relaxation of intrapulmonary artery and vein by nitrogen oxide-containing vasodilators and cyclic GMP, J. Pharmacol. Exp. Ther., 228:33–42.

    PubMed  CAS  Google Scholar 

  • Field, L., Dilts, R. V., Ravichandran, R., Lenhert, P. G., and Carnahan, G. E., 1978, An unusually stable thionitrite from N-acetyl-D,L-penicillamine; X-ray crystal and molecular structure of 2-(acetylamino)-2-carboxy-1,1-dimethylethyl thionitrite, J.C.S. Chem. Commun. 249–250.

    Google Scholar 

  • Furchgott, R. F., and Zawadzki, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F., Zawadzki, J. V., and Cherry, P. D., 1981, Role of endothelium in the vasodilator response to acetylcholine, in: Vasodilatation (P. M. Vanhoutte and I. Leusen, eds.), Raven Press, New York, pp. 49–66.

    Google Scholar 

  • Galvas, P. E., and DiSalvo, J., 1983, Concentration and time-dependent relationships between isosorbide dinitrate-induced relaxation and formation of cyclic GMP in coronary arterial smooth muscle, J. Pharmacol. Exp. Ther. 224:373–378.

    PubMed  CAS  Google Scholar 

  • Gerzer, R., Böhme, E., Hofmann, F., and Schultz, G., 1981a, Soluble guanylate cyclase purified from bovine lung contains heme and copper, FEBS Lett. 132:71–74.

    Article  CAS  Google Scholar 

  • Gerzer, R., Hofmann, F., and Schultz, G., 1981b, Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung, Eur. J. Biochem. 116:479–486.

    Article  CAS  Google Scholar 

  • Gruetter, C. A., Barry, B. K., McNamara, D. B., Gruetter, D. Y., Kadowitz, P. J., and Ignarro, L. J., 1979, Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine, J. Cyclic Nucleotide Res. 5:211–224.

    PubMed  CAS  Google Scholar 

  • Gruetter, C. A., Barry, B. K., McNamara, D. B., Kadowitz, P. J., and Ignarro, L. J., 1980, Coronary arterial relaxation and guanylate cyclase activation by cigarette smoke, N’-nitrosonornicotine and nitric oxide, J. Pharmacol. Exp. Ther. 214:9–15.

    PubMed  CAS  Google Scholar 

  • Gruetter, C. A., Gruetter, D. Y., Lyon, J. E., Kadowitz, P. J., and Ignarro, L. J., 1981a, Relationship between cyclic guanosine 3’,5’-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: Effects of methylene blue and methemoglobin, J. Pharmacol. Exp. Ther. 219:181–186.

    CAS  Google Scholar 

  • Gruetter, C A., Kadowitz, P. J., and Ignarro, L. J., 1981b, Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite and amyl nitrite, Can. J. Physiol. Pharmacol. 59:150–156.

    Article  CAS  Google Scholar 

  • Heppel, L. A., and Hilmoe, R. J., 1950, Metabolism of inorganic nitrite and nitrate esters. II. The enzymatic reduction of nitroglycerin and erythritol tetranitrate by glutathione, J. Biol. Chem. 183:129–138.

    CAS  Google Scholar 

  • Ignarro, L. J., and Gruetter, C. A., 1980, Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: Possible involvement of S-nitrosothiols, Biochim. Biophys. Acta 631:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Edwards, J. C., Gruetter, D. Y., Barry, B. K., and Gruetter, C. A., 1980a, Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds, FEBS Lett. 110:275–278.

    Article  CAS  Google Scholar 

  • Ignarro, L. J., Barry, B. K., Gruetter, D. Y., Edwards, J. C., Ohlstein, E. H., Gruetter, C. A., and Baricos, W. H., 1980b, Guanylate cyclase activation by nitroprusside and nitrosoguanidine is related to formation of S-nitrosothiol intermediates, Biochem. Biophys. Res. Commun. 94:93–100.

    Article  CAS  Google Scholar 

  • Ignarro, L. J., Lippton, H., Edwards, J. C., Baricos, W. H., Hyman, A. L., Kadowitz, P. J., and Gruetter, C. A., 1981a, Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-nitrosothiols as active intermediates, J. Pharmacol. Exp. Ther. 218:739–749.

    CAS  Google Scholar 

  • Ignarro, L. J., Barry, B. K., Gruetter, D. Y., Ohlstein, E. H., Gruetter, C. A., Kadowitz, P. J., and Baricos, W. H., 1981b, Selective alterations in responsiveness of guanylate cyclase to activation by nitroso compounds during enzyme purification, Biochim. Biophys. Acta 673:394–407.

    Article  CAS  Google Scholar 

  • Ignarro, L. J., Kadowitz, P. J., and Baricos, W. H., 1981c, Evidence that regulation of hepatic guanylate cyclase activity involves interactions between catalytic site-SH groups and both substrate and activator, Arch. Biochem. Biophys. 208:75–86.

    Article  CAS  Google Scholar 

  • Ignarro, L. J., Degnan, J. N., Baricos, W. H., Kadowitz, P. J., and Wolin, M. S., 1982a, Activation of purified guanylate cyclase by nitric oxide requires heme: Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung, Biochim. Biophys. Acta 718:49–59.

    Article  CAS  Google Scholar 

  • Ignarro, L. J., Wood, K. S., and Wolin, M. S., 1982b, Activation of purified soluble guanylate cyclase by Protoporphyrin IX, Proc. Natl. Acad. Sci. U.S.A. 79:2870–2873.

    Article  CAS  Google Scholar 

  • Janis, R. A., and Diamond, J., 1979, Relationship between cyclic nucleotide levels and druginduced relaxation of smooth muscle, J. Pharmacol. Exp. Ther. 211:480–484.

    PubMed  CAS  Google Scholar 

  • Kadowitz, P. J., Nandiwada, P., Gruetter, C. A., Ignarro, L. J., and Hyman, A. L., 1981, Pulmonary vasodilator responses to nitroprusside and nitroglycerin in the dog, J. Clin. Invest. 67:893–902.

    Article  PubMed  CAS  Google Scholar 

  • Katsuki, S., and Murad, F., 1977, Regulation of adenosine cyclic 3’,5’-monophosphate and guanosine cyclic 3’,5’-monophosphate levels and contractility in bovine tracheal smooth muscle, Mol. Pharmacol. 13:330–341.

    PubMed  CAS  Google Scholar 

  • Katsuki, S., Arnold, W., Mittal, C, and Murad, F., 1977, Stimulation of guanylate cyclase by sodium nitrosprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine, J. Cyclic Nucleotide Res. 3:23–35.

    PubMed  CAS  Google Scholar 

  • Kawachi, T., Kogure, K., Kamijo, Y., and Sugimura, T., 1970, The metabolism of N-methyl-N’-nitro-N-nitrosoguanidine in rats, Biochim. Biophys. Acta 222:409–415.

    Article  PubMed  CAS  Google Scholar 

  • Keith, R. A., Burkman, A. M., Sokoloski, T. D., and Fertel, R. H., 1982, Vascular tolerance to nitroglycerin and cyclic GMP generation in rat aortic smooth muscle, J. Pharmacol. Exp. Ther. 221:525–531.

    PubMed  CAS  Google Scholar 

  • Kimura, H., Mittal, C. K., and Murad, F., 1975a, Increases in cyclic GMP levels in brain and liver with sodium azide an activator of guanylate cyclase, Nature 257:700–702.

    Article  CAS  Google Scholar 

  • Kimura, H., Mittal, C. K., and Murad, F., 1975b, Activation of guanylate cyclase from rat liver and other tissues by sodium azide, J. Biol. Chem. 250:8016–8022.

    CAS  Google Scholar 

  • Kramer, G. L., and Wells, J. N., 1979, Effects of Phosphodiesterase inhibitors on cyclic nucleotide levels and relaxation of pig coronary arteries, Mol. Pharmacol. 16:813–822.

    PubMed  CAS  Google Scholar 

  • Kruszyna, H., Kruszyna, R., and Smith, R. P., 1982, Nitroprusside increases cyclic guanylate monophosphate concentrations during relaxation of rabbit aortic strips and both effects are antagonized by cyanide, Anesthesiology 57:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Kukovetz, W. R., Poch, G., Holzmann, S., Wurm, A., and Rinner, I., 1978, Role of cyclic nucleotides in adenosine-mediated regulation of coronary flow, Adv. Cyclic Nucleotide Res. 9:397–409.

    PubMed  CAS  Google Scholar 

  • Kukovetz, W. R., Poch, G., Holzmann, S., Wurm, A., and Rinner, I., 1979a, Cyclic nucleotides and coronary flow, in: Cyclic Nucleotides and Therapeutic Perspectives (G. Cehovic and G. A. Robison, eds.), Pergamon Press, Oxford, pp. 109–125.

    Google Scholar 

  • Kukovetz, W. R., Holzmann, S., Wurm, A., and Poch, G., 1979b, Prostacyclin increases cyclic AMP in coronary arteries, J. Cyclic Nucleotide Res. 5:469–476.

    CAS  Google Scholar 

  • Kukovetz, W. R., Holzmann. S., Wurm, A., and Poch, G., 1979c, Evidence for cyclic GMP mediated relaxant effects of nitro-compounds in coronary smooth muscle, Naunyn Schmiedebergs Arch. Pharmacol. 310:129–138.

    Article  CAS  Google Scholar 

  • Kukovetz, W. R., Poch, G., and Holzmann, S., 1981, Cyclic nucleotides and relaxation of vascular smooth muscle, in: Vasodilatation (P. M. Vanhoutte and I. Leusen, eds.), Raven Press, New York, pp. 339–353.

    Google Scholar 

  • Lawley, P. D., and Thatcher, C. J., 1970, Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N’-nitro-N-nitrosoguanidine, Biochem. J. 116:693–707.

    PubMed  CAS  Google Scholar 

  • Lee, T. P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3’,5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 69:3287–3291.

    Article  PubMed  CAS  Google Scholar 

  • Lippton, H. L., Gruetter, C. A., Ignarro, L. J., Meyer, R. L., and Kadowitz, P. J., 1982, Vasodilator actions of several N-nitroso compounds, Can. J. Physiol. Pharmacol. 60:68–75.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, J. E., and Parratt, J. R., 1977, Comparative effects of glyceryl trinitrate on venous and arterial smooth muscle in vitro; relevance to antianginal activity, Br. J. Pharmacol. 60:155–160.

    Article  PubMed  CAS  Google Scholar 

  • McCalla, D. R., Reuvers, A., and Kitai, R., 1968, Inactivation of biologically active Nmethyl-N-nitroso Compounds in aqueous Solution: Effect of various conditions of pH and illumination, Can. J. Biochem. 46:807–811.

    Article  PubMed  CAS  Google Scholar 

  • Miki, N., Kawabe, Y., and Kuriyama, K., 1977, Activation of cerebral guanylate cyclase by nitric oxide, Biochem. Biophys. Res. Commun. 75:851–856.

    Article  PubMed  CAS  Google Scholar 

  • Mittal, C. K., Kimura, H., and Murad, F., 1975, Requirement for a macromolecular factor for sodium azide activation of guanylate cyclase, J. Cyclic Nucleotide Res. 1:261–269.

    PubMed  CAS  Google Scholar 

  • Mittal, C. K., Kimura, H., and Murad, F., 1977, Purification and properties of a protein required for sodium azide activation of guanylate cyclase, J. Biol. Chem. 252:4384–4390.

    PubMed  CAS  Google Scholar 

  • Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., and Kimura, H., 1978, Guanylate cyclase: Activation by azide, nitro Compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin, Adv. Cyclic Nucleotide Res. 9:145–158.

    PubMed  CAS  Google Scholar 

  • Nandiwada, P. A., Hyman, A. L., and Kadowitz, P. J., 1983, Pulmonary vasodilator responses to vagal Stimulation and acetylcholine in the cat, Circ. Res., 53:86–95.

    Article  PubMed  CAS  Google Scholar 

  • Napoli, S. A., Gruetter, C. A., Ignarro, L. J., and Kadowitz, P. J., 1980, Relaxation of bovine coronary arterial smooth muscle by cyclic GMP, cyclic AMP and analogs, J. Pharmacol. Exp. Ther. 212:469–473.

    PubMed  CAS  Google Scholar 

  • Needleman, P., 1976, Organic nitrate metabolism, Annu. Rev. Pharmacol. 16:81–93.

    Article  CAS  Google Scholar 

  • Needleman, P., and Johnson, E. M., Jr., 1973, Mechanism of tolerance development to organic nitrates, J. Pharmacol. Exp. Ther. 184:709–715.

    PubMed  CAS  Google Scholar 

  • Needleman, P., Jakschik, B., and Johnson, E. M., 1973, Sulfhydryl requirement for relaxation of vascular smooth muscle, J. Pharmacol. Exp. Ther. 187:324–331.

    PubMed  CAS  Google Scholar 

  • Neurath, G. B., Dunger, M., and Pein, F. G., 1976, Interaction of nitrogen oxides, oxygen and amines in gaseous mixtures, IARC Sci. Publ. 14:215–225.

    PubMed  CAS  Google Scholar 

  • Ohlstein, E. H., Wood, K. S., and Ignarro, L. J., 1982, Purification and properties of hemedeficient hepatic soluble guanylate cyclase: Effects of heme and other factors on enzyme activation by NO, NO-heme, and Protoporphyrin IX, Arch. Biochem. Biophys. 218:187–198.

    Article  PubMed  CAS  Google Scholar 

  • Pagani, M., Vatner, S. F., and Braunwald, E., 1978, Hemodynamic effects of intravenous sodium nitroprusside in the conscious dog, Circulation 57:144–151.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, B. F., Collier, J. G., and Dobbs, R. J., 1979, Comparative dilator effects of Verapamil and sodium nitroprusside in forearm arterial bed and dorsal hand veins in man: Functional differences between vascular smooth muscle in arterioles and veins, Cardiovasc. Res. 13:16–21.

    Article  PubMed  CAS  Google Scholar 

  • Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1968, The role of cyclic AMP in adipose tissue and smooth muscle, Pharmacologist 10:145–146.

    Google Scholar 

  • Saville, B., 1958, A scheme for the colorimetric determination of microgram amounts of thiols, Analyst 83:670–672.

    Article  Google Scholar 

  • Schoental, R., and Rive, D. J., 1965, Interaction of N-alkyl-N-nitrosourethanes with thiols, Biochem. J. 97:466–474.

    PubMed  CAS  Google Scholar 

  • Schultz, G., Hardman, J. G., and Sutherland, E. W., 1973, Cyclic nucleotides and smooth muscle function, in: Asthma, Physiology, Immunopharmacology, and Treatment (K. F. Austen and L. M. Lichtenstein, eds.), Academic Press, New York, pp. 123–138.

    Google Scholar 

  • Schultz, K. D., Schultz, K., and Schultz, G., 1977, Sodium nitrosprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens, Nature 265:750–751.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, K. D., Böhme, E., Kreye, V. A. W., and Schultz, G., 1979, Relaxation of hormonally stimulated smooth muscular tissues by the 8-bromo derivative of cyclic GMP, Naunyn Schmiedebergs Arch. Pharmacol. 306:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, U., and McCalla, D. R., 1969, Reactions of cysteine with N-methyl-N-nitrosop-toluenesulfonamide and N-methyl-N’-nitro-N-nitrosoguanidine, Can. J. Chem. 47:2021–2027.

    Article  Google Scholar 

  • Spies, C, Schultz, K. D., and Schultz, G., 1980, Inhibitory effects of mepacrine and eicosatetraynoic acid on cyclic GMP elevations caused by calcium and hormonal factors in rat ductus deferens, Naunyn Schmiedebergs Arch. Pharmacol. 311:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, G. P., and Bowdon, B. J., 1972, Comparison of the effects of cysteine upon decomposition of nitrosoureas and of 1-methy 1-3-nitro-1-nitrosoguanidine, Biochem. Pharmacol. 21:265–267.

    Article  PubMed  CAS  Google Scholar 

  • Wolin, M. S., Wood, K. S., and Ignarro, L. J., 1982, Guanylate cyclase from bovine lung: A kinetic analysis of the regulation of the purified soluble enzyme by Protoporphyrin IX, heme and nitrosyl-heme, J. Biol. Chem. 257:13312–13320.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Ignarro, L.J., Gruetter, C.A., Hyman, A.L., Kadowitz, P.J. (1984). Molecular Mechanisms of Vasodilatation. In: Poste, G., Crooke, S.T. (eds) Dopamine Receptor Agonists. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0310-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0310-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0312-2

  • Online ISBN: 978-1-4757-0310-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics