Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 95))

Abstract

Polyunsaturated fatty acids such as arachidonic acid are transformed via the cyclooxygenase pathway into three groups of biological active compounds, the prostaglandin, the thromboxanes and the prostacyclins. These compounds are formed via the 5-Lipoxygenase pathway and play a major role as biolohical mediators on ommediate hypersensitivity reactions and inflammation 1–4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Samuelsson, B. (1982) The leukotrienes, highly biologically active substances involved in allergy and inflammation.Angew. Chem. Int. Ed., 21: 902–910.

    Google Scholar 

  2. Borgeat, P. and Sirois, P. (1981) Leukotrienes: A major step in the understanding of immediate hypersensitivity reactions. J. Med. Chem. 24: 121–126.

    Google Scholar 

  3. Samuelsson, B., Paoletti, R. and Ramwell, P. (1983) Advances in prostaglandin, thromboxane and leukotriene research. 11: Raven Press, New York.

    Google Scholar 

  4. Lewis, R.A., and Austen, K.F. (1984) Molecular determinants for functional responses to the sulfidopeptide leukotrienes. J. Allergy Clin. Immunol. 74: 369–372.

    Google Scholar 

  5. Corey, E.J. (1982) Chemical studies on the slow reacting substances leukotrienes.Experientia, 38: 1259–1281.

    CAS  Google Scholar 

  6. Radmark, 0., Malmsten, C., Samuelsson, B., Goto, G., Marfat, A., and Corey, E.J. (1980) Leukotriene A: Isolation from human polymorphonuclear leukocytes.J. Biol. Chem., 255: 11828–11831.

    Google Scholar 

  7. Boeynaems, J.M., Brash, A.R., Oates, J.A., and Hubbard, W.C. (1980) Preparation and assay of monohydroxy-eicosatetraenoic acids. Anal. Biochem., 104: 259–267.

    Google Scholar 

  8. Corey, E.J., Albright, J.0., Barton, A.E., and Hashimoto, S. (1980) Chemical and enzymic synthesis of 5-HPETE, a key biological precursor of slow-reacting substance of anaphylaxis (SRS) and 5-HETE. J. Am. Chem. Soc., 102: 1435–1436.

    Google Scholar 

  9. Spur, B., Crea, A., Peters, W., and König, W. (1983) Formation and structure determination of 5,6-epoxy-8,11,14-Z-eicosatrienoic acid and 5-oxo-8,11,14-Z-eicosatrienoic acid.Tetrahedron. Lett. 24: 1755–1758.

    CAS  Google Scholar 

  10. Corey, E.J., and Hashimoto, S. (1981) A practical process for large scale synthesis of (S)-5-hydroxy-6-trans-8,11,14-ciseicosatetraenoic acid (5-HETE).Tetrahedron Lett. 22: 299–302.

    CAS  Google Scholar 

  11. Rokach, J., Adams, J. and Perry, R. (1983) A new general method for the synthesis of lipoxygenase products: Preparation of 5-HETE Tetrahedron Lett. 24: 5185–5188.

    CAS  Google Scholar 

  12. Spur, B., Crea, A., and Peters, W. unpublished results

    Google Scholar 

  13. Fitzsimmons, B.J. and Rokach, J. (1984) The total syntheses of several 8,15-dihydroxy arachidonic acid derivatives (8,15, LTB’s ). Tetrahedron Lett. 25: 3043–3046.

    Google Scholar 

  14. Zamboni, R. and Rokach, J. (1983) Stereospecific synthesis of 5S-HETE, 5R-HETE and their transformation to 5(+)HPETE. Tetrahedron Lett. 24: 999–1002.

    Article  CAS  Google Scholar 

  15. Baldwin, J.E., Davies, D.I., Hughes, L. and Gutteridge, N.J.A. (1979) Synthesis from arachidonic acid of potential prostaglandin precursors.J. Chem. Soc. Perkin I: 115–121.

    Google Scholar 

  16. Feldberg, W. and Kellaway, J.C.H. (1938) Liberation of histamine and formation of lysocithin-like substance by cobra venom. J. Physiol. ( London ), 94: 187–226.

    Google Scholar 

  17. Kellaway, C.H. and Trethewie, Q.J. (1940) The liberation of a slow reacting smooth muscle stimulating substance of anaphylaxis. Quart., J. Exp. Physiol., 30: 121–145.

    Google Scholar 

  18. Corey, E.J., Clark, D.A., Goto, G., Marfat, A., Mioskowski, C., Samuelsson, B. and Hammarstr8m, S. (1980) Stereospecific total synthesis of a “slow reacting substance of anaphylaxis”, leukotriene C-1. J. Am. Chem. Soc., 102: 1436–1438, 3663.

    Google Scholar 

  19. Green, R.H. and Lambeth, P.F. (1983) Leukotrienes. Tetrahedron, 39: 1687–1721.

    CAS  Google Scholar 

  20. Corey, E.J., Hashimoto, S. and Barton, A.E. (1981) Chirally directed synthesis of (-)-methyl-5(S),6(S)-oxido-7-hydroxyheptanoat key intermediate for the total synthesis of leukotriene C,D,E. J. Am. Chem. Soc., 103: 721–722.

    Google Scholar 

  21. Rossiter, B.E., Katsuki, T. and Sharpless, K.B. (1981) Asymmetric epoxidation provides shortest routes to four chiral epoxy alcohols which are key intermediates in the syntheses of methymycin, erythromycin, leukotriene C-1 and disparlure. J. Am. Chem. Soc. 103: 464.

    Google Scholar 

  22. Pridgen, N.L., Shilcrat, S.C. and Lantos, I (1984) Asymetric epoxidation of allylic alcohols employing 4,5-diphenyloxazole as masked ester functionality. Tetrahedron Lett. 25: 2835–2838.

    Article  CAS  Google Scholar 

  23. Buck, J.C., Ellis, F. and North, P.C. (1982) A novel stereospecific synthesis of (+)-leukotriene A4 (LTA4), methyl ester.Tetrahedron Lett., 23: 4161–4162.

    Article  CAS  Google Scholar 

  24. Corey, E.J., Mehrota, M.M. and Cashman, J.R. (1983) New synthetic routes to leukotrienes and other arachidonate derived epoxy eicosatetraenoic acids (EPETEs). Exclusion of the hydroxy epoxide pathway from leukotriene biosynthesis. Tetrahedron Lett. 24: 4917–4920.

    Google Scholar 

  25. Cohen, N. et al (1983) Syntheses of leukotrienes C4, D4 and E4. J. Am. Chem. Soc., 105: 3661–3672

    Google Scholar 

  26. Corey, E.J., Marfat, A., Goto, G. and Brion, F. (1980) Leukotriene B4. Total synthesis and assignment of stereochemistry.J. Am. Chem. Soc., 102: 7984–7985.

    Google Scholar 

  27. Corey, E.J., Marfat, A., Munroe, J., Kim, K.S., Hopkins, P.B. and Brion, F. (1981) A stereocontrolled and effective synthesis of leukotriene B. Tetrahedron Lett., 22: 1077–1080.

    Article  CAS  Google Scholar 

  28. Corey, E.J., Pyne, S.G.,and Su, W. (1983) Total synthesis of leukotriene B5. Tetrahedron Lett., 24: 4883–4886.

    CAS  Google Scholar 

  29. Spur, B., Crea, A., Peters, W. and K8nig, W. (1984) Synthesis of leukotriene B3. Arch. Pharm.(Weinheim), 317: in press.

    Google Scholar 

  30. Serhan, C.N., Hamberg, M. and Samuelsson, B. (1984) Trihydroxytetraenes: A novel series of compounds formed from arachidonic acid in human leukocytes. B.B.R.C., 118: 943–949.

    CAS  Google Scholar 

  31. Spur, B., Crea, A., Peters, W. and K8nig, W. (1984) Synthesis of Leukotriene C5, D5, and E5. Arch. Pharm. ( Weinheim ) 317: 280–1.

    Google Scholar 

  32. Spur, B., Jendralla, H., Crea, A., Peters, W. and K8nig, W. (1984) Syntheses of 7Z,9E,11E,14Z-leukotriene C4, D4, E4.Arch. Pharm. ( Weinheim ), 317: 651–652.

    Google Scholar 

  33. Spur, B., Crea, A., Peters, W. and K8nig, W. (1984) Synthese of leukotriene analogs. Arch. Pharm. ( Weinheim ) 317: 647–648.

    Google Scholar 

  34. Spur, B., Crea, A., Peters, W. and K8nig, W. (1983) Synthesis of 11,12,14,15-Tetrahydro-leukotriene C, D, E, via A. Tetrahedron Lett., 24: 2135–2136.

    Google Scholar 

  35. Spur, B., Crea, A., Peters, W and K8nig, W. (1983) Synthese und biologische Eigenschaften der 14,15-Didehydro-leukotriene und ihrer Methylester. Arch. Pharm. ( Weinheim ) 316: 968–970.

    Google Scholar 

  36. Spur, B., Crea, A., Peters, W. and K8nig, W. (1983) Synthesis of 9,10,11,12,14,15-hexahydro-leukotriene E. Arch. Pharm. ( Weinheim ), 316: 572–574.

    Google Scholar 

  37. Corey, E.J., Park, H., Barton, A. and Níi, Y. (1980) Synthesis of three potential inhibitors of the biosynthesis of leukotriene A-E. Tetrahedron Lett., 21: 4243–4246.

    Article  CAS  Google Scholar 

  38. Spur, B., Crea, A., Peters, W. and König, W. (1984) Synthesis of 5,6-thialeukotrienes, inhibitors of the leukotriene biosynthesis. Arch. Pharm. ( Weinheim ), 317: 84–85.

    Google Scholar 

  39. Zamboni, R. and Rokach, J. (1983) Synthesis of the aza analog of LTA4. Tetrahedron Lett., 24: 331–334.

    Article  CAS  Google Scholar 

  40. Nicolaou, K.C., Petasis, N.A. and Seitz, S.P. (1981) 5,6-Methanoleukotriene A4. A stable and biologically active analog of leukotriene A4. J. Chem. Soc. Chem. Commun., 1195–1196.

    Google Scholar 

  41. Spur, B., Crea, A. and Peters, W. (1984) Novel synthesis of Methyl-6-formyl-trans-5,6-methanohexanoate. Z. Naturforsch. ( B) 125–125.

    Google Scholar 

  42. Corey, E.J., Cashman, J.R., Kantner, S.S. and S.W. Wright (1984) Rationally designed, potent competitive inhibitors of leukotriene biosynthesis. J. Am. Chem. Soc. 106: 1503–1504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Spur, B., Crea, A., Peters, W. (1985). Syntheses and Biological Effects of Leukotrienes and Analogs. In: Samuelsson, B., Berti, F., Folco, G.C., Velo, G.P. (eds) Drugs Affecting Leukotrienes and Other Eicosanoid Pathways. NATO ASI Series, vol 95. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7841-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7841-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7843-3

  • Online ISBN: 978-1-4684-7841-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics