Skip to main content

Inhibition of S-Adenosylmethionine-Dependent Transmethylation as an Approach to the Development of Antiviral Agents

  • Conference paper
Antiviral Drug Development

Part of the book series: NATO ASI Series ((NSSA,volume 143))

Abstract

The enzymatic transfer of methyl groups from S-adenosylmethionine (AdoMet) to an acceptor molecule, i.e. biological transmethylation, is widely recognized as a ubiquitous set of reactions involved in a diverse array of physiological processes (Usdin et al., 1982; Borchardt et al., 1986). In addition to their established role in the metabolism of a variety of small molecules such as histamine, catecholamines and phospholipids, it is now apparent that methylation of proteins and nucleic acids is equally significant as a mechanism for regulating the biochemical activity of these macromolecules. Regardless of the type of substrate, however, one of the most important and unifying features of virtually all AdoMet-dependent methyltransferases studied to date is that they follow a reaction scheme (Figure 1) which results in formation of the product, S-adenosylhomocysteine (AdoHcy). Owing to the fact that AdoHcy is a potent competitive inhibitor of these AdoMet-dependent methyltransferases, the rate of cellular methylation is regulated by the existing intracellular ratio of AdoHcy/AdoMet (Cantoni and Chiang, 1980; Chiang and Cantoni, 1979). Consequently, AdoHcy must be continuously degraded or eliminated in order to maintain some potential for methylation to proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarbakke, J., Gordon, R.K., Cross, A.S., Miura, G.A. and Chiang, P.K., 1985, Correlation between DNA hypomethylation and differentiation of HL-60 promyelocyte cells induced by neplanocin A and 3-deaza nucleosides., Fed. Proc., 44:464, Abstract #313.

    Google Scholar 

  • Bader, J.P., Brown, N.R., Chiang, P.K. and Cantoni, G.L., 1978, 3-Deazaadenosine, an inhibitor of adenosylhomocysteine hydrolase, inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells. Virology. 89:495–505.

    Article  Google Scholar 

  • Banerjee, A.K., 1980, 5′-terminal cap structure in eukaryotic messenger ribonucleic acid., Microbiol. Rev., 44:175–205.

    PubMed  CAS  Google Scholar 

  • Banerjee, A.K., Abraham, G. and Colonno, R.J., 1977, Vesicular stomatitis virus: mode of transcription. J. Gen. Virol., 34:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Bodner, A.J., Cantoni, G.L. and Chiang, P.K., 1981, Antiviral activity of 3-deazaadenosine and 5′-deoxy-5′-isobutylthio-3-deazaadenosine (3-deaza-SIBA)., Biochem. Biophys. Res. Commun., 98:476–481.

    Article  PubMed  CAS  Google Scholar 

  • Borchardt, R.T., 1980, S-Adenosyl-L-methionine-dependent macromolecular methyl-transferases: Potential targets for the design of chemotherapeutic agents., J. Med. Chem., 23:347–357.

    Article  PubMed  CAS  Google Scholar 

  • Borchardt, R.T. and Pugh, C.S.G., 1979, Analogues of S-adenosyl-L-homocysteine as inhibitors of viral mRNA methyltransferases., in: “Transmethylation,” Usdin, E., Borchardt, R.T. and Creveling, C.R., eds., pp.197–206, Elsevier/North-Holland, New York, Amsterdam, Oxford.

    Google Scholar 

  • Borchardt, R.T., Wu, Y.S., Huber, J.A. and Wycpalek, A.F., 1976, Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 6. Structural modifications of S-adenosylmethionine. J. Med. Chem.,19:1104–1110.

    Article  PubMed  CAS  Google Scholar 

  • Borchardt, R.T., Eiden, L.E., Wu, B.S. and Rutledge, CO., 1979, Sinefungin, a potent inhibitor of S-adenosylmethionine:protein O-methyltransferase., Biochem. Biophys. Res. Commun., 89:919–924.

    Article  PubMed  CAS  Google Scholar 

  • Borchardt, R.T., Keller, B.T. and Patel-Thombre, U., 1984, Neplanocin A. A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia virus multiplication in mouse L929 cells., J. Biol. Chem., 259:4353–4358.

    PubMed  CAS  Google Scholar 

  • Borchardt, R.T., Creveling, C.R. and Ueland, P.M. (eds.), 1986, “Biological Methylation and Drug Design,” The Humana Press, Clifton, NJ.

    Google Scholar 

  • Borcherding, D.R., 1987, The Synthesis and Biological Activity of Acyclic and Carbocyclic Analogs of Neplanocin A., Ph.D. Thesis, The University of Kansas.

    Google Scholar 

  • Borcherding, D.R., Scholtz, S.A. and Borchardt, R.T., 1987a, The synthesis of analogs of neplanocin A: Utilization of optically active dihydroxycyclopentenones derived from carbohydrates., J. Amer. Chem. Soc., submitted.

    Google Scholar 

  • Borcherding, D.R., Scholtz, S.A., Narayanan, S.R., Keller, B.T. and Borchardt, R.T., 1987b, 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl)-adenine and -3-deaza-adenine: potent inhibitors of bovine liver S-adenosylhomocysteine hydrolase. J. Biol. Chem., submitted.

    Google Scholar 

  • Both, G.W., Banerjee, A.K. and Shatkin, A.J., 1975a, Methylation-dependent translation of viral messenger RNAs in vitro., Proc. Natl. Acad. Sci. U.S.A., 72:1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Both, G.W., Furuichi, Y., Muthukrishnan, S. and Shatkin, A.J., 1975b, Ribosome binding to reovirus mRNA in protein synthesis requires 5′-terminal 7-methylguanosine., Cell. 6:185–195.

    Article  PubMed  CAS  Google Scholar 

  • Camper, S.A., Albers, R.J., Coward, J.K. and Rottman, F.M., 1984, Effect of undermethylation of mRNA on cytoplasmic appearance and half-life., Mol. Cell. Biol., 4:538–543.

    PubMed  CAS  Google Scholar 

  • Cantoni, G.L. and Chiang, P.K., 1980, The role of S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase in the control of biological methylations., in: “Natural Sulfur Compounds: Novel Biochemical and Structural Aspects,” Cavallini, D., Gaull, G.E. and Zappia, V., eds., pp. 67–80, Plenum Publishing Corp., New York and London.

    Google Scholar 

  • Chiang, P.K. and Cantoni, G.L, 1979, Perturbation of biochemical transmethylation by 3-deazaadenosine in vivo., Biochem. Pharmacol., 28:1897–1902.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. D. and Coward, J.K., 1975, Effect of S-adenosylhomocysteine and S-tubercidinylhomocysteine on transfer ribonucleic acid methylation in phytohemagglutinin-stimulated lymphocytes. Mol. Pharmacol., 11:701–707.

    PubMed  CAS  Google Scholar 

  • Chiang, P.K., Cantoni, G.L, Bader, J.P., Shannon, W.M., Thomas, H.J. and Montgomery, J.A., 1978, Adenosylhomocysteine hydrolase inhibitors: synthesis of 5′-deoxy-5′-(isobutylthio)-3-deazaadenosine and its effect on Rous sarcoma virus and Gross murine leukemia virus., Biochem. Biophys. Res. Commun., 82:417–423.

    Article  PubMed  CAS  Google Scholar 

  • Darnell, J.E., Jr., 1979, Transcription units for mRNA production in eukaryotic cells and their DNA viruses. Prog. Nucleic Acid Res. Mol. Biol., 22:327–353.

    Article  PubMed  CAS  Google Scholar 

  • De Clercq, E., 1982, Specific targets for antiviral drugs., Biochem. J., 205:1–13.

    PubMed  Google Scholar 

  • De Clercq, E., 1985a, Antiviral and antimetabolic activities of neplanocins., Antimicrob. Agents Chemother. 28:84–89.

    PubMed  Google Scholar 

  • De Clercq, E., 1985b, Recent trends and development in antiviral chemotherapy., Antiviral Res., Suppl. 1:11–19.

    Article  Google Scholar 

  • De Clercq, E. and Cools, M., 1985, Antiviral potency of adenosine analogues: correlation with inhibition of S-adenosylhomocysteine hydrolase., Biochem. Biophys. Res. Commun., 129:306–311.

    Article  PubMed  Google Scholar 

  • De Clercq, E. and Holy, A., 1979, Antiviral activity of aliphatic nucleoside analogues: structure-function relationship., J.Med Chem., 22:510–513.

    Article  PubMed  Google Scholar 

  • De Clercq, E. and Holy, A., 1985, Alkyl esters of 3-adenin-9-yl-2-hydroxypropanoic acid: A new class of broad-spectrum antiviral agents., J. Med. Chem.. 28:282–287.

    Article  PubMed  Google Scholar 

  • De Clercq, E. and Montgomery, J.A., 1983, Broad-spectrum antiviral activity of the carbocyclic analog of 3-deazaadenosine., Antiviral Res., 3:17–24.

    Article  PubMed  Google Scholar 

  • De Clercq, E., Descamps, J., De Somer, P. and Holý, A., 1978, (S)-9-(2,3-dihydroxypropyl)adenine: an aliphatic nucleoside analog with broad spectrum antiviral activity., Science (Wash. D.C.), 200:563–565.

    Article  Google Scholar 

  • De Clercq, E., Bergstrom, D.E., Holy, A. and Montgomery, J.A., 1984, Broad-spectrum antiviral activity of adenosine analogues., Antiviral Res., 4:119–133.

    Article  PubMed  Google Scholar 

  • de Ferra, F. and Baglioni, C, 1981, Viral messenger RNA unmethylated in the 5′-terminal guanosine in interferon-treated HeLa cells infected with vesicular stomatitis virus., Virology. 112:426–435.

    Article  PubMed  Google Scholar 

  • de Ferra, F. and Baglioni, C., 1983, Increase in S-adenosylhomocysteine concentration in interferon-treated HeLa cells and inhibition of methylation of vesicular stomatitis virus mRNA., J. Biol. Chem., 258:2118–2121.

    PubMed  Google Scholar 

  • de la Haba, G. and Cantoni, G.L, 1959, The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine., J. Biol. Chem., 234:603–608.

    Google Scholar 

  • Fuller, R.W. and Nagarajan, R., 1978, Inhibition of methyltransferases by some new analogs of S-adenosylhomocysteine. Biochem. Pharmacol., 27:1981–1983.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi, Y., LaFinandra, A. and Shatkin, A.J., 1977, 5′-terminal structure and mRNA stability. Nature (London), 266:235–239.

    Article  CAS  Google Scholar 

  • Glazer, R.I. and Knode, M.C., 1984, Neplanocin A. A cyclopentenyl analog of adenosine with specificity for inhibiting RNA methylation. J. Biol. Chem., 259:12964–12969.

    PubMed  CAS  Google Scholar 

  • Glazer, R.I., Hartman, K.D., Knode, M.C., Richard, M.M., Chiang, P.K., Tseng, C.K.H. and Marquez, V.E., 1986a, 3-Deazaneplanocin: a new potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60., Biochem. Biophys. Res. Commun., 135:688–694.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, R.I., Knode, M.C., Tseng, C.K.H., Haines, D.R. and Marquez, V.E., 1986b, 3-Deazaneplanocin A: a new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells., Biochem. Pharmacol., 35:4523–4527.

    Article  PubMed  CAS  Google Scholar 

  • Hasobe, M., McKee, J.G., Borcherding, D.R. and Borchardt, R.T., 1987a, 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl)-adenine and -3-deazaadenine: analogs of neplanocin A which retain potent antiviral activity but exhibit reduced cytotoxicity., Antimicrob. Agents Chemother., submitted.

    Google Scholar 

  • Hasobe, M., McKee, J.G., Borcherding, D.R., Keller, B.T. and Borchardt, R.T., 1987b, Effects of 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl)-adenine and -3-deazaadenine on the metabolism of S-adenosylhomocysteine hydrolase in mouse L929 cells., Mol. Pharmacol., submitted.

    Google Scholar 

  • Hayashi, M., Yaginuma, S., Yoshioka, H. and Nakatsu, K., 1981, Studies on neplanocin A, new antitumor antibiotic. II. Structure determination., J. Antibiot., 34:675–680.

    Article  PubMed  CAS  Google Scholar 

  • Holý, A., Votruba, I. and De Clercq, E., 1982, Synthesis and antiviral activity of stereoisomeric eritadenines., Coll. Czech. Chem. Commun., 47:1392–1407.

    Article  Google Scholar 

  • Inaba, M., Nagashima, K., Tukagoshi, S. and Sakurai, Y., 1986, Biochemical mode of cytotoxic action of neplanocin A in L1210 leukemic cells., Cancer Res., 46:1063–1067.

    PubMed  CAS  Google Scholar 

  • Jacquemont, B. and Huppert, J., 1977, Inhibition of viral RNA methylation in Herpes simplex virus type 1-infected cells by 5′ S-isobutyl-adenosine., J. Virol., 22: 160–167.

    PubMed  CAS  Google Scholar 

  • Kaehler, M., Coward, J. and Rottman, F., 1979, Cytoplasmic location of undermethylated messenger RNA in Novikoff cells., Nucleic Acids Res., 6:1161–1175.

    Article  PubMed  CAS  Google Scholar 

  • Keller, B.T. and Borchardt, R.T., 1986, Metabolism and mechanism of action of neplanocin A — A potent inhibitor of S-adenosylhomocysteine hydrolase., in; “Biological Methylation and Drug Design,” Borchardt, R.T., Creveling, C.R. and Ueland, P.M., eds., pp. 385–396, The Human Press, Clifton, NJ.

    Chapter  Google Scholar 

  • Keller, B.T. and Borchardt, R.T., 1987, Adenosine dialdehyde: a potent inhibitor of vaccinia virus multiplication in mouse L929 cells., Mol. Pharmacol., 31: (in press).

    Google Scholar 

  • Keller, B.T., Clark, R.S., Pegg, A.E. and Borchardt, R.T., 1985, Purification and characterization of some metabolic effects of S-neplanocylmethionine., Mol. Pharmacol., 28: 364–370.

    PubMed  CAS  Google Scholar 

  • Krug, R.M., Broni, B.A. and Bouloy, M., 1979, Are the 5′ ends of influenza viral mRNAs synthesized in vivo or donated by host mRNAs?, Cell, 18:329–334.

    Article  PubMed  CAS  Google Scholar 

  • Lombardini, J.B. and Talalay, P., 1973, Effects of inhibitors of adenosine triphosphate: L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine and L-methionine in normal and malignant mammalian tissues., Mol. Pharmacol., 9:542–560.

    PubMed  CAS  Google Scholar 

  • Matuszewska, B. and Borchardt, R.T., 1987a, Inhibition of S-adenosylhomocystelne hydrolase from Alcaligenes faecalis by neplanocin A., Arch.Biochem.Biophys., submitted.

    Google Scholar 

  • Matuszewska, B. and Borchardt, R.T., 1987b, The role of nicotinamide adenine dinucleo-tide in the inhibition of bovine liver S-adenosylhomocysteine hydrolase by neplanocin A., J. Biol. Chem., 262:265–268.

    PubMed  CAS  Google Scholar 

  • Montgomery, J.A., Clayton, S.J., Thomas, H.J., Shannon, W.M., Arnett, G., Bodner, A.J., Kim, I.-K., Cantoni, G.L. and Chiang, P.K., 1982, Carbocyclic analogue of 3-deazaadenosine: a novel antiviral agent using S-adenosylhomocysteine hydrolase as a pharmacological target., J. Med. Chem., 25:626–629.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.L. and Abeles, R.H., 1976, Mechanism for enzymatic thioether formation. Mechanism of action of S-adenosylhomocysteinase., J. Biol. Chem., 1: 5817–5819.

    Google Scholar 

  • Palmer, J.L and Abeles, R.H., 1979, The mechanism of action of S-adenosylhomocysteinase., J. Biol. Chem., 254:1217–1226.

    PubMed  CAS  Google Scholar 

  • Perry, R.P. and Kelley, D.E., 1974, Existence of methylated messenger RNA in mouse L cells., Cell, 1:37–42.

    Article  CAS  Google Scholar 

  • Pugh, C.S.G., Borchardt, R.T. and Stone, H.O., 1977, Inhibition of Newcastle disease virion messenger RNA (guanine-7-)-methyltransferase by analogues of S-adenosylhomocysteine., Biochemistry, 16:3928–3932.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, C.S.G., Borchardt, R.T. and Stone, H.O., 1978, Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)methyltransferase, mRNA(nucleoside-2′-)methyltransferase, and viral multiplication., J. Biol. Chem. 253:4075–4077.

    PubMed  CAS  Google Scholar 

  • Raies, A., Lawrence, F., Robert-Géro, M., Loche, M. and Cramer, R., 1976, Effect of 5′-deoxy-5′-S-isobutyl adenosine on polyoma virus replication., FEBS Letts. 72:48–52.

    Article  CAS  Google Scholar 

  • Ramakrishnan, V. and Borchardt, R.T., 1987, Adenosine dialdehyde and neplanocin A: Potent inhibitors of S-adenosylhomocysteine hydrolase in neuroblastoma N2a cells., Nerochem. Int., in press.

    Google Scholar 

  • Reddy, R., Ro-Choi, T.S., Henning, D. and Busch, H., 1974, Primary sequence of U-1 nuclear ribonucleic acid of Novikoff hepatoma ascites cells., J. Biol. Chem., 249: 6486–6494.

    PubMed  CAS  Google Scholar 

  • Rice, A.P. and Roberts, B.E., 1983, Vaccinia virus induces cellular mRNA degradation, J. Virol., 47:529–539.

    PubMed  CAS  Google Scholar 

  • Robert-Gero, M., Lawrence, F., Farrugia, G., Berneman, A., Blanchard, P., Vigier, P. and Lederer, E., 1975, Inhibition of virus-induced cell transformation by synthetic analogues of S-adenosylhomocysteine., Biochem. Biophys. Res. Commun., 65: 1242–1249.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, P.P., Tan, M.-T. and Robins, R.K., 1985, Metabolism and action of neplanocin A in Chinese hamster ovary cells., Biochem. Pharmacol., 34:2749–2754.

    Article  PubMed  CAS  Google Scholar 

  • Schlenk, F. and Dainko, J.L., 1974, The S-n-propyl analogue of S-adenosylmethionine., Biochem. Biophys. Acta, 385:312–323.

    Google Scholar 

  • Schlenk, F., Hannum, C.H. and Ferro, A.J., 1978, Biosynthesis of adenosyl-D-methionine and adenosyl-2-methylmethionine by Candida utilis., Arch. Biochem. Biophys., 187:191–196.

    Article  PubMed  CAS  Google Scholar 

  • Secrist, J.A., Clayton, S.J. and Montgomery, J.A., 1984, (±)-3-(4-Amino-1 H-pyrrolo[2,3-d]pyrimidin-1-yl)-5- (hydroxymethyl)-(103a1, 203a1, 303b2,503b2)-1,2-cyclopentanesdiol, the carbocyclic analogue of tubercidin., J. Med. Chem., 27:534–536.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, S., Shiozaki, S., Ohshiro, T. and Yamada, H., 1984, Occurence of S-adenosylhomocysteine hydrolase in prokaryotic cells. Characterization of the enzyme from Alcaligenes faecalis and role of the enzyme in the activated methyl cycle., Eur. J. Biochem., 141:385–392.

    Article  PubMed  CAS  Google Scholar 

  • Sufrin, J.R., Coulter, A.W. and Talalay, P., 1979, Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-adenosyl-L-methionine. IV. Further mono-, bi-, and tricyclic amino acids., Mol. Pharmacol., 15: 661–677.

    PubMed  CAS  Google Scholar 

  • Tsujino, M., Yaginuma, S., Fujii, T., Hayano, K., Matsuda, T., Watanabe, T. and Abe, J., 1980, Neplanocins, new antitumor agents: Biological activities., in: “Current Chemotherapy and Infectious Disease,” Nelson, J.D. and Grassi, C, eds., Vol. 2, pp. 1559–1561, The American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Usdin E., Borchardt, R.T. and Creveling, C.R. (eds.), 1982, “Biochemistry of S-Adenosylmethionine and Related Compounds,” Macmillan Press Ltd., London.

    Google Scholar 

  • Vedel, M., Lawrence, F., Robert-Gero, M. and Lederer, E., 1978, The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by Rous sarcoma virus., Biochem. Biophys. Res. Commun., 85:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Whaun, J.M., Miura, G.A., Brown, N.D., Gordon, R.K. and Chiang, P.K., 1986, Antimalarial activity of neplanocin A with perturbations in the metabolism of purines, polyamines and S-adenosylmethionine., J. Pharmacol. Exp. Therap., 236: 277–293.

    CAS  Google Scholar 

  • Wolfson, G., Chisholm, J., Tashjian, A.H., Jr., Fish, S. and Abeles, R.H., 1986, Neplanocin A: Actions on S-adenosylhomocysteine hydrolase and on hormone synthesis by GH4C1 cells., J. Biol. Chem., 261:4492–4498.

    PubMed  CAS  Google Scholar 

  • Yaginuma, S., Tsujino, M., Muto, N., Otani, M., Hayashi, M., Ishimura, F., Fujii, T., Watanabe, S., Matsuda, T., Watanabe, T. and Abe, J., 1980, Neplanocins, new antitumor agents: Discovery, isolation, and structure., in: “Current Chemotherapy and Infectious Disease,” Nelson, J.D. and Grassi, C, eds., Vol. 2, pp. 1558–1559, The American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Yaginuma, S., Muto, N., Tsujino, N., Sudate, M., Hayashi, M. and Otani, M., 1981, Studies on neplanocin A, new antitumor antibiotic. I. Producing organism, isolation and characterization., J. Antibiot., 34:359–366.

    Article  PubMed  CAS  Google Scholar 

  • Zappia, V., Zydek-Cwick, C.R. and Schlenk, F., (1969), The specificity of S-adenosylmethionine derivatives in methyl transfer reactions. J. Biol. Chem., 244:4499–4509.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Keller, B.T., Borchardt, R.T. (1988). Inhibition of S-Adenosylmethionine-Dependent Transmethylation as an Approach to the Development of Antiviral Agents. In: De Clercq, E., Walker, R.T. (eds) Antiviral Drug Development. NATO ASI Series, vol 143. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7275-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7275-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7277-6

  • Online ISBN: 978-1-4684-7275-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics