Skip to main content

Self-Defense of the Brain: Adenosinergic Strategies in Neurodegeneration

  • Chapter
  • First Online:
Emerging Strategies in Neuroprotection

Part of the book series: Advances in Neuroprotection ((AN,volume 22))

Abstract

Despite steady progress in their diagnosis and treatment, the disorders of the central nervous system (CNS) still remain a great challenge to modern medicine. The breadth and scope of the pathologic factors are such that, even with the improved understanding of the involved events, it is extremely difficult to decide which of them are the primary instigators of the ensuing damage and which are but secondary effects of an ongoing process of the neuronal destruction. The most striking example of the magnitude of the problems that must be faced is provided by the diseases that affect the supply of blood to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Kogure K, Yamamoto H, Imazawa M, Miyamoto K (1987): Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. JNeurochem 48: 503

    Article  CAS  Google Scholar 

  • Alexander SP, Reddington M (1989): The cellular localization of adenosine receptors in rat neostriatum. Neuroscience 3: 645–651

    Article  Google Scholar 

  • Ames, A III, Wright RL, Kowada M, Thurston JM, Majno G (1968): The no-reflow phenomenon. Am J Pathol 52: 437–453

    PubMed  PubMed Central  Google Scholar 

  • Arch JRS, Newsholme EA (1978): The control of metabolism and the hormonal role of adenosine. Essays Biochem 14: 82–121

    CAS  PubMed  Google Scholar 

  • Attwell D, Sarantis M, Szatkowski M, Barbour B, Brew H (in press) In: Excitatory Amino Acids and Synaptic Function,Wheal A, Thomson A, eds. Academic Press

    Google Scholar 

  • Ault B, Wang CM (1986): Adenosine inhibits epileptiform activity arising in hippocampal area CA3. Br J Pharmacol 87: 695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour, B, Szatkowski M, Ingledew N, Attwell D (1989): Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342: 918–920

    Article  ADS  CAS  PubMed  Google Scholar 

  • Barraco RA, Swanson RH, Phillis JW, Berman RF (1984): Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats. Neurosci Lett 46: 317–322

    Article  CAS  PubMed  Google Scholar 

  • Barraco RA, Bryant ShD (1987): Depression of locomotor activity following bilateral injections of adenosine into the striatum of mice. Med Sci Res 15: 421–422

    CAS  Google Scholar 

  • Bartrup JT, Stone TW (1988): Presynaptic actions of adenosine are magnesium dependent. Neuropharmacology 7: 761–763

    Article  Google Scholar 

  • Bartus RT (1990): Drugs to treat age-related neurodegenerative problems: The final frontier of medical science? J Am Geriatr Soc 38: 680–695

    Article  CAS  PubMed  Google Scholar 

  • Beneveniste H, Drejer J, Schousboe A, Diemer NH (1984): Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374

    Article  Google Scholar 

  • Bengtsson F, Siesjö BK (1990): Cell damage in cerebral ischemia: Physiological and structural aspects. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Benzinger M (1969): Tympanic thermometry in surgery and anesthesia. JAMA 8: 1207–1211

    Article  Google Scholar 

  • Berne RM, Rubio R, Curnish RR (1974a): Release of adenosine from ischemic brain. Circ Res 35: 263–271

    Article  Google Scholar 

  • Berne RM, Rubio R, Curnish RR (1974b): Release of adenosine from ischemic brain: Effect on vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35: 262–271

    Article  CAS  Google Scholar 

  • Bernstein M, Fleming JF, Deck JH (1984): Cerebral hypoperfusion after carotid endarterectomy: A cause of cerebral hemorrhage. Neurosurgery 15: 50–56

    Article  CAS  PubMed  Google Scholar 

  • Boarini DJ, Kassel NF, Sprowell JR, Olin J (1984): Intravertebral adenosine fails to alter cerebral blood flow in the dog. Stroke 15: 1057–1060

    Article  CAS  PubMed  Google Scholar 

  • Brodie MS, Lee KS, Fredholm BB, Stahle L, Dunwiddie TV (1987): Central versus peripheral mediation of responses to adenosine receptor agonists: Evidence against a central mode of action. Brain Res 415: 323–330

    Article  CAS  PubMed  Google Scholar 

  • Bruns RF, Katims JJ, Annaus Z, Snyder SH, Daly JW (1983): Adenosine receptor interactions and anxiolytics. Neuropharmacology 12B: 1523–1529

    Article  Google Scholar 

  • Burke SP, Nadler JV (1988): Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: Effects of adenosine and baclofen. J Neurochem 51: 1541–1551

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (1981): Neurotransmitters and trophic factors in the autonomic nervous system. J Physiol (Loud) 313: 1–35

    Article  CAS  Google Scholar 

  • Busto R, Harik SI, Yoshida S, Scheinberg P, Ginsberg MD (1985): Cerebral norepinephrine depletion enhances recovery after brain ischemia. Ann Neurol 18: 329–336

    Article  CAS  PubMed  Google Scholar 

  • Busto R, Dietrich WD, Globus M-YT, Valdes I, Scheinberg P, Ginsberg MD (1987): Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729–738

    Article  CAS  PubMed  Google Scholar 

  • Busto R, Dietrich WD, Globus, M-YT, Ginsberg MD (1989): Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 101: 299–304

    Article  CAS  PubMed  Google Scholar 

  • Cantu RC, Ames A III (1969): Distribution of vascular lesions caused by cerebral ischemia. Relation to survival. Neurology 19: 128–132

    Article  CAS  PubMed  Google Scholar 

  • Chan PH, Fishman RA, Chen SF, Chew S (1983): Effects of temperature on arachidonic acid-induced cellular edema and membrane perturbation in rat brain cortical slices. J Neurochem 41: 1550–1557

    Article  CAS  PubMed  Google Scholar 

  • Chan PH (1988): The role of oxygen radicals in brain injury and edema. In: Cellular Antioxidant Defense Mechanisms, Chow CK, ed., Vol. III. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Chan PH, Fishman RA, Schmiedley JW, Chen SF (1984): Release of polyunsaturated fatty acids from phospholipids and alteration of brain membrane by oxygen-derived free radicals. J Neurosci Res 12: 595–605

    Article  CAS  PubMed  Google Scholar 

  • Choi DW (1988): Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634

    Article  CAS  PubMed  Google Scholar 

  • Choi DW (1990): Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab 2: 105–147

    CAS  Google Scholar 

  • Coffin VL, Carney JM (1986): Effects of selected analogs of adenosine on schedule-controlled behavior in rats. Neuropharmacology 25: 1141–1147

    Article  CAS  PubMed  Google Scholar 

  • Cord JM (1985): Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312: 159–163

    Google Scholar 

  • Crawley JN, Patel J, Marangos JP (1983): Adenosine uptake inhibitors potentiate the sedative effects of adenosine. Neurosci Lett 36: 169–174

    Article  CAS  PubMed  Google Scholar 

  • Cronstein BN, Levin RI, Belanoff J, Weissman G, Hirschhorn R (1986): Adenosine: An endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78: 769–770

    Article  Google Scholar 

  • Daly JW, Bruns RF, Snyder SH (1981): Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Sci 28: 2083–2097

    Article  CAS  PubMed  Google Scholar 

  • Daval, J-L, von Lubitz DKJE, Deckert J, Redmond DJ, Marangos PJ (1989): Protective effect of cyclohexyladenosine on adenosine Al receptors, guanine nucleotide and forskolin binding sites following transient brain ischemia: A quantitative autoradiographic study. Brain Res 491: 212–226

    Article  CAS  PubMed  Google Scholar 

  • DeLeo J, Toth L, Schubert P, Rudolphi K, Kreutzberg GW (1987): Ischemia-induced neuronal cell death, calcium accumulation, and glial response in the hippocampus of the Mongolian gerbil and protection by propentofylline (HWA 285). J Cereb Blood Flow Metab 7: 745–751

    Article  CAS  PubMed  Google Scholar 

  • DeLeo J, Schubert P, Kreutzberg GW (1988a): Propentofylline (HWA 285) protects hippocampal neurons of Mongolian gerbils against ischemic damage in the presence of an adenosine antagonist. Neurosci Lett 84: 307–311

    Article  CAS  PubMed  Google Scholar 

  • DeLeo J, Schubert P, Kreutzberg GW (1988b): Protection against ischemic brain damage using propentofylline in gerbils. Stroke 19: 1535–1539

    Article  CAS  PubMed  Google Scholar 

  • Demopoulos HB, Flamm ES, Seligman ML, Mitamura JA, Ransohoff J (1979): Membrane perturbations in the central nervous system injury: Theoretical basis for free radical damage and a review of the experimental data. In: Neural Trauma, Popp AJ, ed. New York: Raven Press

    Google Scholar 

  • Dolphin AC, Prestwich SA (1985): Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316: 148–150

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dora E (1986): Effect of theophylline on the functional hyperaemic and hypoxic responses of cerebrocortical microcirculation. Acta Physiol Hung 68: 183–197

    CAS  PubMed  Google Scholar 

  • Drury AN, Szent-Györgyi A (1929): The physiological activity of adenosine compounds with especial reference to their action upon mammalian heart. J Physiol (Lond) 68: 213–237

    Article  CAS  Google Scholar 

  • Duncan MJ, Morgan PF (1989): NECA-induced hypomotility in mice: Evidence for a predominantly central site of action. Pharmacol Biochem Behav 32: 487–490

    Article  Google Scholar 

  • Dunwiddie TV (1980): Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21: 541–548

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Fredholm BB (1984): Adenosine receptors mediating inhibitory electrophysiological responses in rat hippocampus are different from receptors mediating cyclic AMP accumulation. Naunyn-Schmiedbergs Arch. Pharmacol 326: 294–301

    Article  CAS  Google Scholar 

  • Dunwiddie TV (1984): Interactions between the effects of adenosine and calcium on synaptic responses in rat hippocampus in vitro. J Physiol (Lond) 350: 545–559

    Article  CAS  Google Scholar 

  • Dunwiddie TV (1985): The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27: 64–139

    Google Scholar 

  • Edvinson L, Fredholm BB (1983): Characterization of adenosine receptors in isolated cerebral arteries of cat. Br J Pharmacol 80: 631–637

    Article  Google Scholar 

  • Emerson TE, Raymond RM (1981): Involvement of adenosine in cerebral hypoxic hyperemia in the dog. Am J Physiol 241: H134–138

    Article  CAS  PubMed  Google Scholar 

  • Engler R (1987): Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia. Fed Proc 46: 2407–2412

    CAS  PubMed  Google Scholar 

  • Erecinska M, Nelson D, Wilson DF, Silver IA (1984): Neurotransmitter amino acids in the CNS. I. Regional changes in amino acid levels in rat brain during ischemia and reperfusion. Brain Res 304: 9–22

    Article  CAS  PubMed  Google Scholar 

  • Evans MC, Swan JH, Meldrum BS (1987): An adenosine analogue, 2-chloroadenosine, protects against long term development of ischemic cell loss in the rat hippocampus. Neurosci Lett 83: 287–292

    Article  CAS  PubMed  Google Scholar 

  • Evoniuk G, von Borstel RW, Wurtman RJ (1987): Antagonism of cardiovascular effects of adenosine by caffeine or 8-(p-sulfophenyl)theophylline. J Pharmacol Exp Ther 2: 428–432

    Google Scholar 

  • Fischer EG, Ames A III (1972): Studies on impairment of cerebral circulation following ischemia: Effect of hemodilution and perfusion pressure. Stroke 3: 538–542

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Dunwiddie TV (1988): How does adenosine inhibit transmitter release. Trends Pharmacol Sci 9: 130–134

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Suzuki H, Tanoue K, Fukushima Y, Yamazaki H (1985): Cerebrovascular injuries and brain edema following activation of platelets. In: Brain Edema, 4th Int. Symp. on Brain Edema, Tokyo 1984, Inaba Y, Klatzo I, Spatz M, eds. Berlin: Springer-Verlag

    Google Scholar 

  • Geiger JD (1986): Localization of [3H]cyclohexyladenosine and [3H]nitrobenzylthioinosine binding sites in rat striatum and superior colliculus. Brain Res 36: 404–408

    Article  Google Scholar 

  • Ginsberg MD (1990): Local metabolic responses to cerebral ischemia. Cerebrovasc Brain Metab 2: 58–93

    CAS  Google Scholar 

  • Globus MY-T, Busto R, Dietrich D, Martinez E, Valdes I, Ginsberg MD (1988): Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 91: 36–40

    Article  CAS  PubMed  Google Scholar 

  • Glowa JR, Spealman RD (1984): Behavioral effects of caffeine, N6-(L-phenylisopropyl)adenosine and their combination in the squirrel monkey. JPharmacol Exp Ther 216: 484–491

    Google Scholar 

  • Goldstein M (1990): Decade of the brain: Challenge and opportunities in stroke research. Stroke 3: 373–374

    Article  Google Scholar 

  • Goodman RR, Cooper MJ, Gavish M, Snyder SH (1981): Guanine nucleotide and cation regulation of the binding of [3H]cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine Al receptors in brain membranes. Mol Pharmacol 21: 329–335

    Google Scholar 

  • Grenmyre TJ, Young AB (1989): Excitatory amino acids and Alzheimer’s disease. Neurobiol Aging 10: 593–602

    Article  Google Scholar 

  • Haas HL, Greene RW (1984): Adenosine enhances afterhyperpolarization and accommodation in hippocampal pyramidal cells. Pflugers Arch 402: 244–247

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Andersson P, Lazarewicz J, Jacobson I, Butcher S, Sandberg M (1987): Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides in rat striatum during transient ischemia. J Neurochem 49: 227–335

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Andine P, Lehmann A (1990): Excitatory amino acids and hypoxicischemic damage in the immature brain. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Haller C, Kuschinsky W (1987): Moderate hypoxia: Reactivity of pial arteries and local effect of theophylline. J Appl Physiol 63: 2208–2215

    Article  CAS  PubMed  Google Scholar 

  • Handa J, Kidooka M, Takenaka T (1990): Calcium and free fatty acids in cerebral ischemic cell damage. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Hansen AJ (1985): Effect of anoxia on ion distribution in the brain. Physiol Rev 65: 101–145

    Article  CAS  PubMed  Google Scholar 

  • Hansen AJ (1990): Ion homeostasis in cerebral ischemia. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Harms HH, Wardeh G, Mulder AH (1979): Effects of adenosine on depolarization-induced release of various radiolabeled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18: 577–580

    Article  CAS  PubMed  Google Scholar 

  • Heistad DD, Marcus ML, Gourley JK, Busija DW (1981): Effect of adenosine and dipyridamole on cerebral blood flow. Am J Physiol 240: H775–780

    CAS  PubMed  Google Scholar 

  • Hillered L, Smith M-L, Siesjö BK (1985): Lactic acidosis and recovery of the mitochondrial function following forebrain ischemia in rat. J Cereb Blood Flow Metab 5: 259–266

    Article  CAS  PubMed  Google Scholar 

  • Hoffman BB, Dall’aglio E, Hollenbeck C, Chang H, Reaven GM (1986): Suppression of free fatty acids and triglycerides in normal and hypertriglycemic rats by the adenosine receptor agonist phenylisoprophyladenosine. J Pharmacol Exp Ther 3: 715–718

    Google Scholar 

  • Hoffman WE, Albrecht RF, Miletich DJ (1984): The role of adenosine in CBF increases during hypoxia in young vs. aged rats. Stroke 15: 124–129

    Article  CAS  PubMed  Google Scholar 

  • Holton FA, Holton P (1954): The capillary dilator substances in dry powder of spinal roots: A possible role of adenosine triphosphate in chemical transmission from nerve endings. J Physiol (Loud) 126: 124–140

    Article  CAS  Google Scholar 

  • Hossman K-A, Lechapte Gruter H, Hossman V (1973): The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 204: 281–299

    Google Scholar 

  • Hossman K-A, Sakaki S, Kimoto K (1976): Cerebral uptake of glucose and oxygen in the cat brain after prolonged ischemia. Stroke 7: 301–305

    Article  Google Scholar 

  • Hyman TB, Van Hoesen GW, Damasio AR (1987): Alzheimer’s disease: Glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 22: 37–40

    Article  CAS  PubMed  Google Scholar 

  • Ikeda J, Nagashima G, Saito N, Nowak TS, Joo F, Mies G, Lohr JM, Ruetzler ChA, Klatzo I (1990): Putative neuroexcitation in cerebral ischemia and brain injury. Stroke 21 (Suppl III): 65–70

    Google Scholar 

  • Itoh T, Kawakami M, Yamaguchi Y (1986): Effect of allopurinol on ischemia and reperfusion induced cerebral injury in spontaneously hypertensive rats. Stroke 17: 1284–1287

    Article  CAS  PubMed  Google Scholar 

  • Jörgensen MB, Johansen FF, Diemer NH (1987): Removal of entorhinal cortex protects CA 1 neurons from ischemic damage. Acta Neuropathol (Berl) 60: 217–222

    Google Scholar 

  • Kagström E, Smith M-L, Siesjö BK (1983): Recirculation in the rat following incomplete ischemia. J Cereb Blood Flow Metab 3: 183–192

    Article  PubMed  Google Scholar 

  • Kalimo H, Olsson Y, Paljarvi L, Söderfeldt B (1982): Structural changes in brain tissue under hypoxic-ischemic conditions. J Cereb Blood Flow Metab 2 (Suppl 1): S19 - S23

    PubMed  Google Scholar 

  • Kirino T (1982): Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 257–269

    Article  Google Scholar 

  • Kirino T, Sano K (1984): Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 62: 201–208

    Article  CAS  Google Scholar 

  • Kontos HA (1989): Oxygen radicals in cerebral ischemia. In: Cerebrovascular Diseases, 16th Princeton Conf., Ginsberg MD, Dietrich WD, eds. New York: Raven Press

    Google Scholar 

  • Kraft SA, Larson CP Jr, Shuer LM, Steinberg G, Benson GV, Pearl RG (1990): Effect of hyperglycemia on neuronal changes in a rabbit model of focal cerebral ischemia. Stroke 21: 447–450

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW, Barron KD, Schubert P (1978): Cytochemical localization of 5-nucleotidase in glial plasma membranes. Brain Res 158: 247–257

    Article  CAS  PubMed  Google Scholar 

  • Krieglstein J (1990): Pharmacology and drug therapy of Cerebral ischemia. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Krnjevic K (1990): Adenosine triphosphate-sensitive potassium channels in anoxia. Stroke 21 (Suppl III): 190–193

    Google Scholar 

  • Kukovetz WR, Poch G, Holzman S, Wurm A, Rinner I (1978): Role of cyclic nucleotides in adenosine mediated regulation of coronary flow. Adv Cyclic Nucleotide Res 9: 397–409

    CAS  PubMed  Google Scholar 

  • Laham A, Claperon N, Durussel JJ, Fattal E Delattre J, Pusieux F, Couvreur P, Rossignol P (1987): Liposomally-entrapped ATP: Improved efficiency against experimental brain ischemia in the rat. Life Sci 40: 2011–2016

    Article  CAS  PubMed  Google Scholar 

  • Lassen NA (1959): Cerebral blood flow and oxygen consumption in man. Physiol Rev 39: 183–238

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Reddington M, Schubert P, Kreutzberg GW (1983): Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of Al receptors. Brain Res 260: 156–159

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Schubert P, Reddington M, Kreutzberg GW (1986a): The distribution of adenosine receptors and 5-nucleotidase in the hippocampal formation of several mammalian species. J Comp Neurol 246: 427–434

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Tetzlaff W, Kreutzberg GW (1986b): Rapid down-regulation of hippo-campal adenosine receptors following brief anoxia. Brain Res 380: 155–158

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Reddington M (1986): Autoradiographic evidence for multiple CNS binding sites for adenosine derivatives. Neuroscience 2: 535–549

    Article  Google Scholar 

  • Long JB, Rigamonti DD, Martinez-Arizala A (1989): The adenosine analogs 2-chloroadenosine (2CA) and 5-(N-ethyl)carboxamidoadenosine (NECA) protect against dynorphin A (DYN)-induced rat spinal cord injury. Soc Neurosci Abstr 15 (1): 42

    Google Scholar 

  • Madison DV, Fox AP, Tsien RW (1987): Adenosine reduces an inactivating component of calcium current in hippocampal CA3. Biophys J 51 (abstr): 30A

    Google Scholar 

  • Marangos PJ, Bouleneger JP (1985): Basic and clinical aspects of adenosinergic neuromodulation. Neurosci Biobehav Rev 9: 421–430

    Article  CAS  PubMed  Google Scholar 

  • Marangos PJ, von Lubitz DKJE, Daval J-L, Deckert J (1990): Adenosine: Its relevance to the treatment of brain ischemia and trauma. In: Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, Meldrum BS, Williams M, eds. Baltimore: Wiley-Liss, Inc.

    Google Scholar 

  • Marcum JM, Dedman JR, Brinkley BR, Means A (1978): Control of microtubule assembly-disassembly by calcium dependent regulator protein. Proc. Natl. Acad. Sci. USA

    Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984): Voltage dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309: 261–263

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987): Cellular mechanisms underlying neurotoxicity. Trends Neurosci 2: 59–61

    Article  Google Scholar 

  • McAfee DA, Henon BK (1985): Adenosine and ATP. In: Neurotransmitter Actions in the Vertebrate Nervous System, Rogawski MA, Barker JL, eds. New York: Plenum Press

    Google Scholar 

  • McBean DE, Harper AM, Rudolphi KA (1988): Effects of adenosine and its analogues on porcine basilar arteries: Are only A2 receptors involved? J Cereb Blood Flow Metab 8: 40–45

    Article  CAS  PubMed  Google Scholar 

  • Minamisawa H, Mellergard P, Smith M-L, Bengtsson F, Theander S, Boris-Möller F, Siesjö BK (1990): Preservation of brain temperature during ischemia in rats. Stroke 21: 758–764

    Article  CAS  PubMed  Google Scholar 

  • Morii S, Ngai AC, Ko KR, Winn HR (1987): Role of adenosine in regulation of cerebral blood flow: Effect of theophylline during normoxia and hypoxia. Am J Physiol 253: H165–175

    CAS  PubMed  Google Scholar 

  • Murray TF, Cheney DL (1982): Neuronal location of N6-cyclohexyl[3H]adenosine binding sites in rat and guinea-pig brain. Neuropharmacology 24: 575–580

    Article  Google Scholar 

  • Murray TF, Sylvester D, Schultz CS, Szot P (1985): Purinergic modulation of the seizure threshold for pentylentetrazol in the rat. Neuropharmacology 8: 761–766

    Article  Google Scholar 

  • Myers RE (1979): Lactic acid accumulation as a cause of brain edema and cerebral necrosis resulting from oxygen deprivation. In: Advances in Perinatal Neurology, Korobkin R, Guilleminault G, eds. New York: Spectrum

    Google Scholar 

  • Nedergaard M, Diemer N (1987): Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol (Berl) 73: 131–137

    CAS  Google Scholar 

  • Nedergaard M (1988): Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol Scand 77: 81–101

    Article  CAS  PubMed  Google Scholar 

  • Newby AC (1984): Adenosine as a retaliatory metabolite. Trends Biol Sci 9: 42–44

    Article  CAS  Google Scholar 

  • Nicholls DG (1989): Release of glutamate, aspartate and -y-aminobutyric acid from isolated nerve terminals. J Neurochem 2: 331–341

    Article  Google Scholar 

  • Nicholls D, Attwell D (1990): The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11: 462–468

    Article  PubMed  Google Scholar 

  • Novak L, Bregestovski P, Ascher P, Herbert A, Prochiantz A (1985): Magnesium gates glutamate activated channels in mouse central neurones. Nature 316: 440

    Article  ADS  Google Scholar 

  • Olesen SP (1987): Free oxygen radicals decrease electrical resistance of microvas-cular endothelium in brain. Acta Physiol Scand 129: 181–187

    Article  CAS  PubMed  Google Scholar 

  • Onodera H, Kogure K (1985): Autoradiographic visualization of adenosine Al receptors in the gerbil hippocampus: Changes in the receptor density after transient ischemia. Brain Res 345: 406–408

    Article  CAS  PubMed  Google Scholar 

  • Onodera H, Kogure K (1990): Calcium antagonist, adenosine Al and muscarine bindings in rat hippocampus after transient ischemia. Stroke 21: 771–776

    Article  CAS  PubMed  Google Scholar 

  • Patt A, Harkem AH, Burton LK, et al. (1988): Xanthine oxidase-derived hydrogen peroxide contributes to ischemia-reperfusion edema in gerbil brains. Ann Neurol 81: 1556–1562

    CAS  Google Scholar 

  • Phillis JW, Wu PH (1981): The role of adenosine and its nucleotides in central synaptic transmission. Progr Neurobiol 16: 187–239

    Article  CAS  Google Scholar 

  • Phillis JW, Wu PH (1983): The role of adenosine in central neuromodulation. In: Regulatory Function of Adenosine, Berne RM, Rall TW, Rubio R eds. Boston: Nijhoff

    Google Scholar 

  • Phillis JW, O’Regan MH, Walter GA (1988): Effects of nifedipine and felodipine on adenosine and inosine release from the hypoxemic rat cerebral cortex. J Cereb Blood Flow Metab 8: 179–185

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, O’Regan MH (1988): Deoxycoformycin prevents ischemia-induced locomotor hyperactivity in the unanesthetized gerbil. Med Sci Res 16: 897–898

    CAS  Google Scholar 

  • Phillis JW, O’Regan M (1989): Deoxycoformycin antagonizes ischemia-induced neuronal degeneration. Brain Res Bull 22: 537–540

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW (1989): Xanthine oxidase inhibition attenuates ischemic brain injury in the gerbil. Med Sci Res 17: 137–138

    ADS  CAS  Google Scholar 

  • Phillis JW (1990a): Adenosine, inosine, and the oxypurines in cerebral ischemia. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Phillis JW (1990b): Adenosine in the control of the cerebral circulation. Cerebrovasc Brain Metab 1: 26–54

    Google Scholar 

  • Poulson OB, Strandgard S, Edvinsson L (1990): Cerebral autoregulation. Cerebrovasc Brain Metab 2: 161–192

    Google Scholar 

  • Prestwich SA, Forda SR, Dolphin AC (1987): Adenosine antagonists increase spontaneous and evoked transmitter release from neuronal cells in culture. Brain Res 405: 130–139

    Article  CAS  PubMed  Google Scholar 

  • Pulsinelli WA, Levy DE, Duffy E (1982): Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11: 499–509

    Article  CAS  PubMed  Google Scholar 

  • Rehncrona S, Siesjö BK, Westerberg E (1978): Adenosine and cyclic AMP in cerebral cortex of rats in hypoxia, status epilepticus and hypercapnia. Acta Physiol Scand 104: 453

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JA, Sebastiao AM (1988): Subtypes of adenosine receptors. Trends Pharmacol Sci 9: 279–280

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal R, Fiskum G (1990): Brain mitochondrial function in cerebral ischemia and resuscitation. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Rosner MJ (1987): Cerebral perfusion pressure: Link between intracranial pressure and systemic circulation. In: Cerebral Blood Flow, Wood JH, ed. New York: McGraw-Hill

    Google Scholar 

  • Rothman SM, Olney JW (1986): Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann Neurol 19: 105–111

    Article  CAS  PubMed  Google Scholar 

  • Rudolphi KA, Keil M, Hinze H-J (1987): Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: A behavioural and histopathological study. J Cereb Blood Flow Metab 7: 74–81

    Article  CAS  PubMed  Google Scholar 

  • Safar P (1988): Resuscitation from clinical death: Pathophysiologic limits and therapeutic potentials. Crit Care Med 16: 923–941

    Article  CAS  PubMed  Google Scholar 

  • Schlaepfer WW, Zimmerman U-JP, Micko S (1981): Neurofilament proteolysis in rat peripheral nerve: Homologies with calcium-activated proteolysis in other tissues. Cell Calcium 2: 235–250

    Article  CAS  Google Scholar 

  • Schmidt-Kastner R, Hossman K-A, Grosse Ophoff B (1987): Pial artery pressure after one hour global ischemia. J Cerebr Blood Flow Metab 7: 74–8111

    Article  Google Scholar 

  • Schmiedley JW (1990): Free radicals in central nervous system ischemia. Stroke 7: 1086–1090

    Article  Google Scholar 

  • Schubert P, Dux E (1990): Selective neuronal death in cerebral ischemia and protective mechanisms. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Schubert P, Dux E (1990): Selective neuronal death in cerebral ischemia and protective mechanisms. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Schuldiner S (1987): Role of neurotransmitter transport processes in synaptic transmission. CRC Crit Rev Biochem 22: 1–38

    Article  PubMed  Google Scholar 

  • Segal M (1982): Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus. Eur J Pharmacol 79: 193–199

    Article  CAS  PubMed  Google Scholar 

  • Seida M, Wagner HG, Vass K, Klatzo I (1988): Effect of aminophylline on postischemic edema and brain damage in cats. Stroke 19: 1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Siesjö BK (1981): Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1: 155–185

    Article  Google Scholar 

  • Siesjö BK, Wieloch T (1985): Cerebral metabolism in ischemia: Neurochemical basis for therapy. Br . J. Anesth. 57: 47–62

    Article  Google Scholar 

  • Siesjö BK (1988a): Historical overview: Calcium, ischemia and death of brain cells. Ann NY Acad Sci 522: 638–661

    Article  ADS  PubMed  Google Scholar 

  • Siesjö BK (1988b): Mechanisms of ischemic brain damage. Crit. Care Med 16: 954–963

    Article  PubMed  Google Scholar 

  • Siesjö BK, Bengtsson F (1989a): Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140

    Article  PubMed  Google Scholar 

  • Siesjö BK, Bengtsson F (1989b): Calcium, calcium antagonists and ischemic cell death in the brain. In: Pharmacology of Cerebral Ischemia, Proc 2nd Int. Symp on Pharmacology of Cerebral Ischemia, Marburg 1988, J Krieglstein, ed. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Siesjö BK, Agardh C-D, Bengtsson F (1990a): Free radicals and brain damage. Cerebrovasc Brain Metab 1: 165–211

    Google Scholar 

  • Siesjö BK, Ekholm A, Kenichiro K, Theander S (1990b): Acid-base changes during complete brain ischemia. Stroke 21 (Suppl III): 193–199

    Google Scholar 

  • Sollevi A, Torssell L, Fredholm BB, Stettergren G, Blomback M (1985): Adenosine spares platelets during cardiopulmonary bypassing in man without causing systemic vasodilation. Scand J Thorac Surg 19: 155–159

    CAS  Google Scholar 

  • Sollevi A (1986): Cardiovascular effects of adenosine in man: Possible clinical implications. Progr Neurobiol 27: 319–349

    Article  CAS  Google Scholar 

  • Smith M-L, von Hanwehr R, Siesjö BK (1986): Changes in extra-and intracellular pH in the brain during and following ischemia in hyperglycemic and moderately hypoglycemic rats. J Cereb Blood Flow Metab 5: 574–583

    Article  Google Scholar 

  • Spatz M, Mrsulja BB (1990): Monoamines and cerebral ischemia. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor, BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Suzuki R, Yamaguchi T, Choh-Luh L, Klatzo I (1983): The effects of 5-minute ischemia in Mongolian gerbils. II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol (Berl) 60: 217–222

    Article  CAS  Google Scholar 

  • Tagashira Y, Matsuda M, Welch KMA, Chabi E, Myer JS (1977): Effects of cyclic AMP and dibutyryl cyclic AMP on cerebral hemodynamics and metabolism in the baboon. J Neurosurg 46: 484–493

    Article  CAS  PubMed  Google Scholar 

  • Tomida S, Nowak TS Jr, Vass K, Lohr JM, Klatzo I (1987): Experimental model for repetitive ischemic attacks in gerbil: The cumulative effect of repeated ischemic insults. J Cereb Blood Flow Metab 7: 773–782

    Article  CAS  PubMed  Google Scholar 

  • Torregosa G, Terrasa JC, Salom JB, Miranda FJ, Campos V, Alborch E (1988): P1-purinoreceptors in the cerebral bed of goat in vivo. Eur J Pharmacol 149: 17–24

    Article  Google Scholar 

  • Trost T, Stock K (1977): Effects of adenosine derivatives on cAMP accumulation and lipolysis in rat adipocytes and on adenylate cyclase in adipocyte plasma membranes. Naunyn-Schmiedbergs Arch Pharmacol 19: 33–40

    Article  Google Scholar 

  • Trussel LO, Jackson MB (1987): Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J Neurosci 10: 3306–3316

    Article  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979): Adenosine regulates two different types of receptors: The accumulation of cyclic AMP in cultured brain cells. J Neurochem 33: 999–1005

    Article  PubMed  Google Scholar 

  • Voll CL, Auer RN (1988): The effect of postischemic blood glucose levels on ischemic brain damage in the rat. Ann Neurol 24: 638–646

    Article  CAS  PubMed  Google Scholar 

  • von Hanwehr R, Smith M-L, Siesjö BK (1986): Extra-and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem 46: 331–339

    Article  Google Scholar 

  • von Lubitz DKJE, Dambrosia JM, Kempski O (1986a): Postischemic application of cyclohexyl adenosine (CHA) improvement of survival and of preservation of selectively vulnerable areas in gerbil. Abstr, X Int. Congr Neuropathol, Stockholm 1986 p 108

    Google Scholar 

  • von Lubitz DKJE, Dambrosia JM, Kempski O (1986b): Postischemic applications of cyclohexyl adenosine (CHA) in gerbils: Morphometric study of hippocampal CAI region. Abstr, X Int. Congr Neuropathol, Stockholm 1986 p 118

    Google Scholar 

  • von Lubitz DKJE, Dambrosia JM, Kempski O, Redmond DJ (1988): Cyclohexyl adenosine protects against neuronal death following ischemia in the CAI region of gerbil hippocampus. Stroke 19: 1133–1139

    Article  Google Scholar 

  • von Lubitz DKJE, Dambrosia JM, Redmond DJ (1989): Protective effect of cyclohexyl adenosine in treatment of cerebral ischemia in gerbils. Neuroscience 2: 451–462

    Article  Google Scholar 

  • von Lubitz DKE, Marangos PJ (1990): Cerebral ischemia in gerbils: Postischemic administration of cyclohexyl adenosine and 8-sulphophenyl-theophylline. J Mol Neurosci 2: 53–59

    Article  Google Scholar 

  • Wauquier A, Van Belle H, Van den Brock WAE, Janssen PAJ (1987): Sleep improvement in dogs after oral administration of mioflazine, a nucleoside transport inhibitor. Psychopharmacology 91: 424–439

    Article  Google Scholar 

  • Welsh FA, Sims RE, Harris V (1990): Mild hypothermia prevents ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 10: 557–563

    Article  CAS  PubMed  Google Scholar 

  • White BC, Wiegenstein JG, Wenegar CD (1984): Brain ischemic anoxia. JAMA 12: 1587–1590

    Google Scholar 

  • Whittingham TS (1990): Aspects of brain energy metabolism and cerebral ischemia. In: Cerebral Ischemia and Resuscitation, Schurr A, Rigor BM, eds. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Wojcik WJ, Neff NH (1983): Differential location of Al adenosine and A2 receptors in striatum. Neurosci Lett 41: 55–60

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Shima T, Uozumi T, Sogabe T, Yamada K, Kawasaki T (1983): A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of a-tocopherol administration. Stroke 14: 977–982

    Article  CAS  PubMed  Google Scholar 

  • Yeung SH, Fossom LH, Gill DL, Cooper DMF (1985): Magnesium exerts a central role in the regulation of inhibitory adenosine receptors. Biochem J 229: 91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Dag, K.J., von Lubitz, E., Marangos, P.J. (1992). Self-Defense of the Brain: Adenosinergic Strategies in Neurodegeneration. In: Marangos, P.J., Lal, H. (eds) Emerging Strategies in Neuroprotection. Advances in Neuroprotection, vol 22. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-6796-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6796-3_9

  • Published:

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-6798-7

  • Online ISBN: 978-1-4684-6796-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics