Skip to main content

Erythrocyte ATP (iATP) as an Indicator of Neonatal Hypoxia

  • Chapter
Purine and Pyrimidine Metabolism in Man VI

Abstract

Neonatal hypoxia is a major cause of morbidity and mortality in new-borns (NB). Fetal asphyxia has traditionally been diagnosed and graded using clinical signs (meconium-staining, fetal bradycardia, Apgar score [1]) and biochemical parameters (pH, lactate [2]). However, the sensitivity and specificity of these indices are not optimal and more accurate methods for assessing hypoxia are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.P. Addy. Birth asphyxia. Br Med J 285: 1288–1289 (1982).

    Article  Google Scholar 

  2. P.J. Cohen. The metabolic function of oxygen and biochemical lesions of hypoxia. Anesthesiology 37: 148–177 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. O.D. Saugstad. Hypoxanthine as a measurement of hypoxia. Pediatr Res 9: 158–161 (1975).

    Article  PubMed  CAS  Google Scholar 

  4. O.D. Saugstad. Hypoxanthine as an indicator of hypoxia: Its role in health and disease through free radical production. Pediatr Res 23: 143–150 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. O.D. Saugstad, M. Ziegler, B. Kessel, B. Saunders, and L. Gluck. Correlation of plasma hypoxanthiine and chatecolamine levels in the umbilical vein. J Perinat Med 14: 339–343 (1986).

    PubMed  CAS  Google Scholar 

  6. O.D. Saugstad, and L. Gluck. Plasma hypoxanthine levels in newborn infants: A specific indicator of hypoxia. J Perinat Med 10: 266–272 (1982).

    Article  PubMed  CAS  Google Scholar 

  7. F.A. Mateos, J.G. Puig, M.L. Jiménez, and I.H. Fox. Hereditary xanthinuria: Evidence for enhanced hypoxanthine salvage. J Clin Invest 79: 847–852 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. G.S. Sykes, P. Jhonson, F. Ashworth, et al. Do Apgar score indicate asphyxia? Lancet 1: 494–496 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. R.A. Harkness, R.J. Simmonds, S.B. Coade, and C.R. Lawrence. Ratio of the concentration of hypoxanthine to creatinine in urine from newborn infants: A possible indicator for the metabolic damage due to hypoxia. Br J Obst Gynaecol 90: 447–452 (1983).

    Article  CAS  Google Scholar 

  10. R.A. Harkness, and R.J. Lund. Cerebrospinal fluid concentrations of hypoxanthine, xanthine, uridine and inosine: High concentrations of the ATP metabolite hypoxanthine after hypoxia. J Clin Pathol 36: 1–8 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. H. Manzke, K. Dorner, and J. Grunitz. Urinary hypoxanthine, xanthine and uric acid excretions in newborn infants with perinatal complications. Acta Pediatr Scand 66: 713–717 (1977).

    Article  CAS  Google Scholar 

  12. K. Thiringer. Cord plasma hypoxanthine as a measure of fetal hypoxia. Acta Pediatr Scand 72: 231–237 (1983).

    Article  CAS  Google Scholar 

  13. E.L. Bratteby, and S.A. Swanstrom. Hypoxanthine concentration in plasma during the first two hours after birth in normal and asphyxiated infants. Pediatr Res 16: 152–155 (1982).

    Article  PubMed  CAS  Google Scholar 

  14. S.A. Swanstrom, and E.L. Hypoxanthine as a test of perinatal hypoxia as compared to lactate, base deficit and pH. Pediatr Res 16: 156–160 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. M.C. O’connors, R.A. Harkness, and R.J. Simmonds. The measurement of hypoxanthine, xanthine, inosine and uridine in umbilical cord blood and fetal scalp blood samples as a measure of fetal hypoxia. Br J Obst Gynaecol 88: 381–390 (1981).

    Article  Google Scholar 

  16. R.A. Harkness, R.J. Simmonds, and S.B. Coade. Purine transport and metabolism in man: The effect of exercise on concentration of purine bases, nucleosides and nucleotides in plasma, urine, leukocytes and erythrocytes. Clin Sci 64: 333–340 (1983).

    PubMed  CAS  Google Scholar 

  17. J.R. Sutton, C.J. Towes, G.R. Ward, and I.H. Fox. The purine metabolism during strenous muscular exercise in man. Metabolism 29: 254–260 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. L.H. Ketai, R.H. Simon, J.W. Kreit, and C.M. Grum. Plasma hypoxanthine and exercise. Am Rev Resp Dis 136: 98–101 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. I.H. Fox. Adenosine triphosphate degradation in specific disease. J Lab Clin Med 106: 101–110 (1985).

    PubMed  CAS  Google Scholar 

  20. C.M. Grum, R.H. Simon, D.R. Dantzker, and I.H. Fox. Evidence for adenosine triphosphate degradation in critically-ill patients. Chest 88: 763–767 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. J.O. Wolliscroft, and I.H. Fox. Increased body fluid purine levels during hypotensive events. Evidence for ATP degradation. Am J Med 81: 472–478 (1986).

    Article  Google Scholar 

  22. W. Kamine, M. Burdelski, G. Steinhof, R. Burckhartd, W. Lauchart, and R. Pichlmar. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantations. Transplantation 45: 138–143 (1987).

    Google Scholar 

  23. E. Beutler. “Red Cell Metabolism. A Manual of Biochemical Methods”. 2nd ed. Grune and Stratton, New York (1975).

    Google Scholar 

  24. F. Bontemps, G. Van den Berghe, H.G. Hers. Pathways of adenine nucleotide catabolism in erythrocytes. J Clin Invest 77: 824–830 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Mateos, F.A., Puig, J.G., Ramos, T.H., Carranza, R.H., Miranda, M.E., Gasalla, R.C. (1989). Erythrocyte ATP (iATP) as an Indicator of Neonatal Hypoxia. In: Mikanagi, K., Nishioka, K., Kelley, W.N. (eds) Purine and Pyrimidine Metabolism in Man VI. Advances in Experimental Medicine and Biology, vol 253A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5673-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5673-8_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5675-2

  • Online ISBN: 978-1-4684-5673-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics