Skip to main content

Lattice Disorder in Br, Cl, and F Implanted CdS — Channeling Study

  • Chapter
Ion Implantation in Semiconductors and Other Materials

Part of the book series: The IBM Research Symposia Series ((IRSS))

  • 225 Accesses

Abstract

Backscattering of 2 MeV He+ has been used to examine lattice disorder production and annealing of CdS implanted with keV Br, Cl, and F at fluences ranging between 1 × 1014 cm-2 to 1 × 1017 cm-2. Using a calculated value of 60 eV/Å for the dE/dx of 1.80 MeV He+ in CdS, the measured depths of the disorder peaks are 82 Å, 144 Å, and 422 Å, respectively. The measured depths of the Cl and Br disorder peaks are only 42% as deep as their calculated projected ranges, whereas the measured F peak is 71% as deep as that calculated. For each ion species, the number of scattering centers produced increased linearly with log fluence, and for Br a satxiration value of 2.4 × 1016 atoms/cm2 was reached. The Cl implants approach a saturation greater than 5.3 × 1016 atoms/cm2, and no saturation was observed for the F implants. The rates at which Cd atoms are displaced from the lattice are 10 atoms/Br ion, 3 atoms/Cl ion, and 2.5 atoms/F ion. The backscattering spectra do not indicate amorphous layer formation for the saturation Br implants, but do indicate this for the 8 × 1016 Cl/cm2 and the 1 × 1017 F/cm2 implants. The saturation fluence for Br appears consistent with qualitative electron microscopy results for Ag implants in CdS which indicate fluences greater than 1 x× 1015 Ag/ cm2 are required to produce overlapping of discrete disorder clusters observed at lower fluences.

Isochronal anneal studies performed up to 500° C show that a significant amount of disorder is removed between 200° C and 300° C for the F and Cl implants, whereas disorder annealing is found approximately between 100° C and 250° C and between 400° C and 500° C in the Br implanted samples. Reverse annealing was observed for the F and Cl implants in the temperature range 25° C to 200° C. For Br implants, the reverse annealing peaked at 100° C. Previous studies of fast neutron irradiation effects in CdS reveal an anneal stage between room temperature and 300° C. Also, electron microscopy of Ag implants reveal an annealing stage above 400° C, These results tentatively suggest similar defects are present in the neutron, F, and Cl implants and that an additional defect is present in the Ag and Br implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aven and J. S. Prener, Eds., Physics and Chemistry of II-VI Compounds, (John Wiley and Sons, Inc., New York, 1967).

    Google Scholar 

  2. F. Chernow, G. Eldridge, G. Ruse, and L. Wahlin, Appl. Phys. Letters, 12 539 (1968).

    Article  Google Scholar 

  3. W. W. Anderson and J. T. Mitchell, Appl. Phys. Letters, 12 334 (1968).

    Article  ADS  Google Scholar 

  4. M. Lichtensteiger, I. Lagnado, and H. C. Gatos, Appl. Phys. Letters, 15 418 (1969).

    Article  ADS  Google Scholar 

  5. B. Tell and W. M. Gibson, J. Appl. Phys., 40, 5320 (1969).

    Article  ADS  Google Scholar 

  6. B. Tell, W. M. Gibson, and J. W. Rodgers, Appl. Phys. Letters, 17, 315 (1970).

    Article  ADS  Google Scholar 

  7. J. P. Donnelly, A. G. Foyt, E. D. Hinkley, W. T. Lurdley, and J. O. Dimmock, Appl. Phys. Letters, 12, 303 (1968).

    Article  ADS  Google Scholar 

  8. Y. S. Park and C. H. Chung, Appl. Phys. Letters, 18, 99 (1971).

    Article  ADS  Google Scholar 

  9. S. L. Hou, K. Beck, and J. A. Marley, Jr., Appl. Phys. Letters, 14, 151 (1969).

    Article  ADS  Google Scholar 

  10. J. Marine and H. Rodot, Appl. Phys. Letters, 17, 352 (1970).

    Article  ADS  Google Scholar 

  11. G. Eldridge, P. K. Govind, D. A. Nieman, and F. Chernow, Proc. European Conf. Ion Implantation, Reading, 1970, p. 143

    Google Scholar 

  12. P. K. Govind and F. J. Fraikor, J. Appl. Phys., 42, 2476 (1971).

    Article  ADS  Google Scholar 

  13. S. A. Armatage, Proc. European Conf. Ion Implantation, Reading, 1970, p. 138.

    Google Scholar 

  14. J. A. Olley, P. M. Williams, and A. D. Yoffe, Proc. European Conf. Ion Implantation, Reading, 1970, p. 148.

    Google Scholar 

  15. P. M. Williams and A. D. Yoffe, Rad. Effects, 9, 139 (1971).

    Article  Google Scholar 

  16. J. R. Parsons, Phil. Mag., 12, 1159 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  17. J. R. Parsons and C. W. Hoelke, Radiation Effects in Semiconductors, Ed. by F. Vook (Plenum, N.Y., 1968) p. 339.

    Google Scholar 

  18. J. A. Hutchby, Rad. Effects, 16, 189 (1972).

    Article  Google Scholar 

  19. J. C. McGill, S. L. Kurtin, and G. A. Shifrin, J. Appl. Phys., 41 246 (1970).

    Article  ADS  Google Scholar 

  20. J. W. Mayer, L. Eriksson, and J. A. Davies, Ion Implantation in Semiconductors, (Academic Press, N.Y., 1970) pp. 126–148.

    Google Scholar 

  21. W. S. Johnson and J. F. Gibbons, Projected Range Statistics in Semiconductors, Dist. by Stanford University Bookstore (1969).

    Google Scholar 

  22. E. Bøgh, Can. J. Phys., 46 653 (1968).

    Article  ADS  Google Scholar 

  23. P. V. Pavlov, D. I. Tetel’bamn, E. I. Zorin, and V. I. Alekseev, Soviet Physics — Solid State, 8, 2141 (1967).

    Google Scholar 

  24. S. T. Picraux, W. H. Weisenberger, and F. L. Vook, Rad. Effects, 7 101 (1971).

    Article  ADS  Google Scholar 

  25. W. H. Weisenberger, S. T. Picraux, and F. L. Vook, Rad. Effects, 9 121 (1971).

    Article  Google Scholar 

  26. J. E. Westmoreland, O. M. Marsh, and R. G. Hunsperger, Rad. Effects, 5 245 (1970).

    Article  ADS  Google Scholar 

  27. J. W. Mayer, L. Eriksson, S. T. Picraux, and J. A. Davies, Can. J. Phys., 46 663 (1968).

    Article  ADS  Google Scholar 

  28. G. H. Kinchin and R. S. Pease, Rept. Prog. Phys., 18 1 (1955).

    Article  ADS  Google Scholar 

  29. F. Chernow, “Synthesis and Characterization of Thin Ferroelectric and Semiconducting Films,” AFML-TR-70–9, April 1970.

    Google Scholar 

  30. R. T. Johnson, Jr., J. Appl. Phys., 39, 3517 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Miller, W.E., Hutchby, J.A., Webster, R.C. (1973). Lattice Disorder in Br, Cl, and F Implanted CdS — Channeling Study. In: Crowder, B.L. (eds) Ion Implantation in Semiconductors and Other Materials. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2064-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2064-7_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2066-1

  • Online ISBN: 978-1-4684-2064-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics