Skip to main content

Lattice Location of Low-Z Impurities in Medium-Z Targets Using Ion-Induced X-Rays

  • Chapter
Ion Implantation in Semiconductors and Other Materials

Part of the book series: The IBM Research Symposia Series ((IRSS))

  • 226 Accesses

Abstract

The common method of Rutherford backscattering and channeling of light energetic ions is in general not suited to lattice location studies of impurity atoms having a mass similar to or lower than the host. While specific nuclear reactions are sometimes available they usually require high beam doses and yield high backgrounds of scattered particles. In two such situations we have used ion induced x-ray yields to determine lattice location viz. for 32S and 31P implants in Ge single crystals. In the course of this work we have had to identify and optimize a number of experimental parameters, in particular how the beam type affects (a) ψ1/2,xmin and crystal damage rates, (b) x-ray yields (P-K, S-K, Ge-L and Ge-K), target bremsstrahlung and recoil-induced molecular x-ray intensities. Choice of detector geometry, aperture and window also proved to be important. Detection limits for P and S are now certainly better than 1 x 1014 atoms.cm-2 in a thick Ge target for 0.5 MeV proton excitation. We have found that a room temperature implant of 40 keV 31P annealed at 450oC is highly (93%) substitutional in Ge for a dose of 0.7 x 1015 ions.cm-2, but shows a much lower fraction at 2.7 x 1015 ions.cm. Lattice location of S implanted into Ge parallels the pattern from Group VI impurities implanted and annealed in Si, showing ≤ 50% xmin. values for the S signals in <110> and <111> directions. A different distribution for S is implied by <100> channeling data and <111> and <110> angular scans.

This is a condensed version of a longer two-part paper that has been submitted to the Journal of Applied Physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, J. W. Mayer, L. Eriksson and J. A. Davies, “Ion Implantation in Semiconductors”, (Academic Press, New York, 1970).

    Google Scholar 

  2. J. A. Davies, L. Eriksson, N. G. E. Johansson and I. V. Mitchell, Phys. Rev. 181, 548 (1969).

    Article  ADS  Google Scholar 

  3. J. W. Mayer, L. Eriksson and J. A. Davies, Can. J. Phys. 46, 633 (1968).

    Article  ADS  Google Scholar 

  4. J. Gyulai, O. Meyer, R. D. Pashley and J. W. Mayer, Rad. Effects 7, 17 (1971).

    Article  ADS  Google Scholar 

  5. K. Björkvist, B. Domeij, L. Eriksson, G. Fladda, A. Fontell and J. W. Mayer, Appl. Phys. Lett. 13, 379 (1968).

    Article  ADS  Google Scholar 

  6. J. A. Davies, J. Denhartog and J. L. Whitton, Phys. Rev. 165, 345 (1968).

    Article  ADS  Google Scholar 

  7. J. D. Garcia, Phys. Rev. A4, 955 (1971).

    ADS  Google Scholar 

  8. D. L. Walters and C. P. Bhalla, Phys. Rev. A3 1919 (1971).

    ADS  Google Scholar 

  9. E. Merzbacher and H. W. Lewis, Handbuch der Physik, Vol. 34, (Ed. S. Flügge, Springer-Verlag, 1958) 166 ff.

    Google Scholar 

  10. F. W. Saris, I. V. Mitchell and J. F. Chemin, to be published.

    Google Scholar 

  11. K. B. Winterbon, “Range-Energy Data for keV Ions in Amorphous Materials”, AECL-3194 (1968).

    Google Scholar 

  12. B. Domeij, G. Fladda and N. G. E. Johansson, Rad. Effects 6 155 (1970).

    Article  ADS  Google Scholar 

  13. J. U. Andersen, G. Andreasen, J. A. Davies and E. Uggerhøj, Rad. Effects 7 25 (1971).

    Article  ADS  Google Scholar 

  14. O. Herzer and S. Kalbitzer in “Ion Implantation in Semiconductors”, Ed. by I. Rüge and J. Graul (Springer-Verlag, Berlin, 1971) p. 307.

    Chapter  Google Scholar 

  15. J. Haskeil, E. Rimini and J. W. Mayer, J. Appl. Phys. 43 3425 (1972).

    Article  ADS  Google Scholar 

  16. S. T. Picraux, N. G. E. Johansson and J. W. Mayer, in “Semiconductor Silicon” Ed. by R. R. Haberecht and E. L. Kern (Electrochemical Society, New York, 1969) p. 422.

    Google Scholar 

  17. S. T. Picraux, W. M. Gibson and W. L. Brown, Phys. Rev. B6, 1382 (1972).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Chemin, J.F., Mitchell, I.V., Saris, F.W. (1973). Lattice Location of Low-Z Impurities in Medium-Z Targets Using Ion-Induced X-Rays. In: Crowder, B.L. (eds) Ion Implantation in Semiconductors and Other Materials. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2064-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2064-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2066-1

  • Online ISBN: 978-1-4684-2064-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics