Skip to main content

The Role of Reactive Oxygen Species in Biological Damage and the Effect of Some Chemopreventive Agents

  • Chapter
Protease Inhibitors as Cancer Chemopreventive Agents

Abstract

Reactive oxygen species (ROS) can be generated by a variety of sources. The best known source is ionizing radiation which causes formation of hydroxyl radicals (·OH), and in the presence of O2, also superoxide anion radicals (·O-2) and hydrogen peroxide (H2O2) (Scholes, 1983). Cellular sources cause the formation of qualitatively the same ROS but in different proportions. These ROS arise by the enzymatically mediated reduction of molecular oxygen utilizing one to four electrons donated by various cellular reducing agents (Aust et al., 1985; Halliwell and Gutteridge, 1986; Vuillaume, 1987; Byczkowski and Gessner, 1988). These enzymatic processes include electron transport and redox cycling of endogenous quinones such as menadione (vitamin K), of chemotherapeutic quinone antibiotics such as adriamycin, daunorubicin, streptonegrin, and bleomycin, or of active agents such as paraquat. ROS can also be produced during oxidative metabolism of xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), nitroaromatics, and amines (Frenkel et al., 1988a; Leadon et al., 1988; Washburn and Di Giulio, 1988; O’Brien, 1988, Ochi and Kaneko, 1989; Wei and Frenkel, 1992b). Phagocytic cells are a very prolific source of the ROS that are generated during the respiratory burst. I will describe this last process in greater detail a little later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, A. S., Hong, J.-Y., and Randolph, V., 1983, Pseudo-inhibitors of neutrophils superoxide production: Evidence that soybean-derived polypeptides are superoxide dismutases, Biochem. Biophys. Res. Commun. 117:22–29.

    Article  Google Scholar 

  • Ashurst, S. W., Cohen, G. M., Nesnow, S., DiGiovanni, J., and Slaga, T. J., 1983, Formation of benzo(a)pyrene/DNA adducts and their relationship to tumor-initiation in mouse epidermis, Cancer Res. 43:1024–1029.

    PubMed  CAS  Google Scholar 

  • Aust, S. D., Morehouse, L. A., and Thomas, C. E., 1985, Role of metals in oxygen radical reactions, J. Free Radical Biol. Med. 1:3–25.

    Article  CAS  Google Scholar 

  • Badwey, J. A., and Karnovsky, M. L., 1980, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem. 49:695–726.

    Article  PubMed  CAS  Google Scholar 

  • Barak, M., Ulitzur, S., and Merzbach, D., 1983, Phagocytosis-induced mutagenesis in bacteria, Mutat. Res. 121:7–16.

    Article  PubMed  CAS  Google Scholar 

  • Bhimani, R., Zhong, Z., Stern, A., and Frenkel, K., 1992, Effects of red blood cells (RBCs) on formation of H2O2 and oxidized bases in DNA of human white blood cells (WBC) treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), Proc. Am. Assoc. Cancer Res. 33:161.

    Google Scholar 

  • Biemond, P., Swaak, A. J. G., Penders, J. M. A., Beindorff, C. M., and Koster, J. F., 1986, Superoxide production by polymorphonuclear leucocytes in rheumatoid arthritis and osteoarthritis: In vivo inhibition by the antirheumatic drug piroxicam due to interference with the activation of the NADPH-oxidase, Ann. Rheum. Dis. 45:249–255.

    Article  PubMed  CAS  Google Scholar 

  • Birnboim, H. C., 1983, Importance of DNA strand-break damage in tumor promotion, in: Radio-protectors and Anticarcinogens (O. F. Nygaard and M. G. Simic, eds.), Academic Press, New York, pp. 539–556.

    Google Scholar 

  • Boutwell, R. K., 1964, Some biological aspects of skin carcinogenesis, Prog. Exp. Tumor Res. 4:207–250.

    PubMed  CAS  Google Scholar 

  • Breimer, L. H., 1990, Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: The role of DNA base damage, Mol. Carcinogenesis 3:188–197.

    Article  CAS  Google Scholar 

  • Burkhardt, H., Schwingel, M., Menninger, H., Macartney, H. W., and Tschesche, H., 1986, Oxygen radicals as effectors of cartilage destruction, Arthritis Rheum. 29:379–387.

    Article  PubMed  CAS  Google Scholar 

  • Byczkowski, J. Z., and Gessner, T., 1988, Minireview. Biological role of superoxide ion-radical, Int. J. Biochem. 20:569–580.

    Article  PubMed  CAS  Google Scholar 

  • Cadet, J., and Teoule, R., 1978, Comparative study of oxidation of nucleic acid components by hydroxyl radicals, singlet oxygen and superoxide anion radicals, Photochem. Photobiol. 28:661–667.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti, P. A., 1976, Base damage induced by ionizing radiation, Photochem. Photobiol. Nucleic Acids 2:375–401.

    Article  CAS  Google Scholar 

  • Chester, J. F., Gaissert, H. A., Ross, J. S., Malt, R. A., and Weitzman, S. A., 1986, Augmentation of 1,2-dimethylhydrazine-induced colon cancer by experimental colitis in mice: Role of dietary vitamin E, J. Natl. Cancer Inst. 76:939–941.

    PubMed  CAS  Google Scholar 

  • Chevion, M., 1988, A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals, Free Radical Biol. Med. 5:27–37.

    Article  CAS  Google Scholar 

  • de Mello-Filho, A. C., and Meneghini, R., 1985, Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species, Biochim. Biophys. Acta 847:82–89.

    Article  PubMed  CAS  Google Scholar 

  • DiGiovanni, J., Sawyer, T. W., and Fisher, E. P., 1986, Correlation between formation of a specific hydrocarbon-deoxyribonucleoside adduct and tumor-initiating activity of 7, 12-dimethylbenz(a)anthracene and its 9-and 10-monofluoroderivatives in mice, Cancer Res. 46:4336–4341.

    PubMed  CAS  Google Scholar 

  • Dipple, A., Pigott, M. A., Bigger, A. H., and Blake, D. M., 1984, 7, 12-Dimethylbenz(a)anthracene-DNA binding in mouse skin: Response of different mouse strains and effects of various modifiers of carcinogenesis, Carcinogenesis 5:1087–1090.

    Article  PubMed  CAS  Google Scholar 

  • D’Onofrio, C., Maly, F. E., Fischer, H., and Maas, D., 1984, Differential generation of chemiluminescence-detectable oxygen radicals by normal polymorphonuclear leukocytes challenged with sera from systemic lupus erythematosus and rheumatoid arthritis patients, Klin. Wochenschr. 62:710–716.

    Article  CAS  Google Scholar 

  • Dunham, L. J., 1972, Cancer in man at a site of prior benign lesion of skin or mucous membrane: A review, Cancer Res. 32:1359–1374.

    PubMed  CAS  Google Scholar 

  • Dutton, D. R., and Bowden, G. T., 1985, Indirect induction of a clastogenic effect in epidermal cells by a tumor promoter, Carcinogenesis 6:1279–1284.

    Article  PubMed  CAS  Google Scholar 

  • Fantone, J. C., and Ward, P. A., 1982, Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions, Am. J. Pathol. 107:397–418.

    CAS  Google Scholar 

  • Feldman, G., Ramsen, J., Shinohara, K., and Cerutti, P., 1978, Excisability and persistence of benzo(a)pyrene DNA adducts in epithelial human lung cells, Nature 274:796–798.

    Article  PubMed  CAS  Google Scholar 

  • Fiala, E. S., Conaway, C. C., Biles, W. T., and Johnson, B., 1987, Enhanced mutagenicity of 2-nitropropane nitronate with respect to 2-nitropropane—Possible involvement of free radical species, Mutat. Res. 179:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Fiala, E. S., Conaway, C. C., and Mathis, J. E., 1989, Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane, Cancer Res. 49:5518–5522.

    PubMed  CAS  Google Scholar 

  • Fischer, S. M., Hardin, L., Klein-Szanto, A., and Slaga, T., 1985, Retinoyl-phorbol-acetate is a complete skin tumor promoter in SENCAR mice, Cancer Lett. 27:323–327.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, D. S., Osinga, D., and Bonney, R. J., 1986, Role of polymorphonuclear leukocytes in connective tissue breakdown during the reverse passive Arthus reaction, Biochem. Pharmacol. 35:2601–2606.

    Article  PubMed  CAS  Google Scholar 

  • Floyd, R. A., Watson, J. J., Harris, J., West, M., and Wong, P. K., 1986, Formation of 8-hy-droxydeoxyguanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to the tumor promoter, tetradecanoylphorbolacetate, Biochem. Biophys. Res. Commun. 137:841–846.

    Article  PubMed  CAS  Google Scholar 

  • Floyd, R. A., West, M., Jasheway, D., and Fischer, S. M., 1987, Occurrence of 8-hydroxyguanine, the hydroxyl free radical adduct, in mouse skin epidermal DNA during tumor promotion by phorbol ester, Proc. Am. Assoc. Cancer Res. 28:162.

    Google Scholar 

  • Freeman, B. A., and Crapo, J. D., 1982, Biology of disease. Free radicals and tissue injury, Lab. Invest. 47:412–426.

    PubMed  CAS  Google Scholar 

  • Frenkel, K., 1989, Oxidation of DNA bases by tumor promoter-activated processes, Environ. Health Perspect. 81:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, K., 1992, Carcinogen-mediated oxidant formation and oxidative DNA damage, Pharmacol. Ther. 53(1):127–166.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, K., and Chrzan, K., 1987a, Radiation-like modification of DNA and H2O2 formation by activated human polymorphonuclear leukocytes (PMNs), in: Anticarcinogenesis and Radiation Protection (P. A. Cerutti, O. F. Nygaard, and M. G. Simic, eds.), Plenum Press, New York, pp. 97–102.

    Chapter  Google Scholar 

  • Frenkel, K., and Chrzan, K., 1987b, Hydrogen peroxide formation and DNA base modification by tumor promoter-activated polymorphonuclear leukocytes, Carcinogenesis 8:455–460.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, K., and Gleichauf, C., 1991, Hydrogen peroxide formation by cells treated with a tumor promoter, Free Radical Res. Commun. 12-13:783–794.

    Article  CAS  Google Scholar 

  • Frenkel, K., Goldstein, M. S., and Teebor, G. W., 1981, Identification of the cis-thymine glycol moiety in chemically oxidized and γ-irradiated deoxyribonucleic acid by high-pressure liquid chromatography, Biochemistry 20:7566–7571.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, K., Cummings, A., Solomon, J., Cadet, J., Steinberg, J. J., and Teebor, G. W., 1985, Quantitative determination of the 5(hydroxymethyl)uracil moiety in the DNA of γ-irradiated cells, Biochemistry 24:4527–4533.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, K., Chrzan, K., Troll, W., Teebor, G. W., and Steinberg, J. J., 1986a, Radiation-like modification of bases in DNA exposed to tumor promoter-activated polymorphonuclear leukocytes, Cancer Res. 46:5533–5540.

    PubMed  CAS  Google Scholar 

  • Frenkel, K., Cummings, A., and Teebor, G. W., 1986b, 5-Hydroxymethyl uracil: A product of ionizing radiation and tritium transmutation formed in DNA, in: Radiation Carcinogenesis and DNA Alterations (F. J. Burns, A.C. Upton, and G. Sillini, eds.), Plenum Press, New York, pp. 439–445.

    Chapter  Google Scholar 

  • Frenkel, K., Chrzan, K., Ryan, C.A., Wiesner, R., and Troll, W., 1987, Chymotrypsin-specific protease inhibitors decrease H2O2 formation by activated human polymorphonuclear leukocytes, Carcinogenesis 8:1207–1212.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, K., Donahue, J. M., and Banerjee, S., 1988a, Benzo(a)pyrene-induced oxidative DNA damage: A possible mechanism for promotion by complete carcinogens, in: Oxy-Radicals in Molecular Biology and Pathology (P. A. Cerutti, I. Fridovich, and J. M. McCord, eds.), Liss, New York, pp. 509–524.

    Google Scholar 

  • Frenkel, K., Karkoszka, J., Donahue, J., and Banerjee, S., 1988b, Polycyclic aromatic hydrocarbon (PAH)-induced formation of H2O2 and of oxidized thymines in DNA by rat liver microsomes, Proc. Am. Assoc. Cancer Res. 29:151.

    Google Scholar 

  • Frenkel, K., Zhong, Z., Wei, H., Karkoszka, J., Patel, U., Rashid, K., Georgescu, M., and Solomon, J. J., 1991a, Quantitative high-performance liquid chromatography analysis of DNA oxidized in vitro and in vivo. Anal. Biochem. 196:126–136.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, K., Zhong, Z., Rashid, K., and Fujiki, H., 1991b, Sarcophytols and protease inhibitors suppress H2O2 formation and oxidative DNA damage, in: Anticarcinogenesis and Radiation Protection. 2: Strategies in Protection from Radiation and Cancer (O. F. Nygaard, ed.), Plenum Press, New York, pp. 357–366.

    Google Scholar 

  • Fujiki, H., Suganuma, ML, Suguri, H., Yoshizawa, S., Takagi, K., and Kobayashi, S., 1989, Sarcophytols A and B strongly inhibit tumor promotion by teleocidin in two-stage carcinogenesis in mouse skin, J. Cancer Res. Clin. Oncol. 115:25–28.

    Article  PubMed  CAS  Google Scholar 

  • Fürstenberger, G., Berry, D. L., Sorg, B., and Marks, F., 1981, Skin tumor promotion by phorbol esters is a two-stage process, Proc. Natl. Acad. Sci. USA 78:7722–7726.

    Article  PubMed  Google Scholar 

  • Fürstenberger, G., Sorg, B., and Marks, F., 1983, Tumor promotion by phorbolesters in skin: Evidence for a memory effect, Science 220:89–91.

    Article  PubMed  Google Scholar 

  • Gensler, H. L., Watson, R. R., Moriguchi, S., and Bowden, G. T., 1987, Effects of dietary retinyl palmitate or 13-cis-retinoic acid on the promotion of tumors in mouse skin, Cancer Res. 47:967–970.

    PubMed  CAS  Google Scholar 

  • Goldstein, G. D., Witz, G., Amoruso, M., and Troll, W., 1979, Protease inhibitors antagonize the activation of polymorphonuclear leukocyte oxygen consumption, Biochem. Biophys. Res. Commun. 88:854–860.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1986, Oxygen free radicals in relation to biology and medicine: Some problems and concepts, Arch. Biochem. Biophys. 246:501–514.

    Article  PubMed  CAS  Google Scholar 

  • Ide, M. L., Kaneko, M., and Cerutti, P. A., 1984, Benzo(a)pyrene and ascorbate-CuSO4 induce DNA damage in human cells by indirect action, in: Protective Agents in Cancer (D. C. H. McBrien and T. F. Slater, eds.), Academic Press, New York, pp. 125–140.

    Google Scholar 

  • Jeffrey, A. M., Weinstein, I. B., Jennette, K. W., Grzeskowiak, K., Nakanishi, K., Autrup, H., and Harris, C., 1977, Structures of benzo(a)pyrene nucleic acid adducts formed in human and bovine bronchial expiants, Nature 269:348–350.

    Article  PubMed  CAS  Google Scholar 

  • Ji, C., and Marnett, L. J., 1992, Oxygen radical-dependent epoxidation of (7S, 8S)-dihydroxy-7, 8-dihydrobenzo[a]pyrene [(+)-BP-7, 8-diol] in mouse skin in vivo: Stimulation by phorbol esters and inhibition by antiinflammatory steroids, J. Biol. Chem. 267:17842–17848.

    PubMed  CAS  Google Scholar 

  • Kasai, H., Crain, P. F., Kochino, Y., Nishimura, S., Ootsuyama, A., and Tanooka, H., 1986, Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7:1849–1851.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, H., Nishimura, S., Kurakawa, Y., and Hayashi, Y., 1987, Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA, Carcinogenesis 8:1959–1961.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, H., Okada, Y., Nishimura, S., Rao, M. S., and Reddy, J. K., 1989, Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator, Cancer Res. 49:2603–2605.

    PubMed  CAS  Google Scholar 

  • Kasprzak, K. S., Diwan, B. A., Konishi, N., Misra, M., and Rice, J. M., 1990, Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, Carcinogenesis 11:647–652.

    Article  PubMed  CAS  Google Scholar 

  • Kinzel, V., Fiirstenberger, G., Loehrke, H., and Marks, F., 1986, Three-stage tumorigenesis in mouse skin: DNA synthesis as a prerequisite for the conversion stage induced by TPA prior to initiation, Carcinogenesis 7:779–782.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, S., Takaku, F., and Sakamoto, S., 1979, Possible involvement of proteases in superoxide production by human polymorphonuclear leukocytes, FEBS Lett. 99:275–278.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., 1980, Oxygen metabolism and the toxic properties of phagocytes, Ann. Intern. Med. 93:480–489.

    PubMed  CAS  Google Scholar 

  • Klein, C. B., Frenkel, K., and Costa, M., 1991, The role of oxidative processes in metal carcinogenesis, Chem. Res. Toxicol. 4:592–604.

    Article  PubMed  CAS  Google Scholar 

  • Kohda, K., Tada, M., Kasai, H., Nishimura, S., and Kawazoe, Y., 1986, Formation of 8-hy-droxyguanine residues in cellular DNA exposed to the carcinogen 4-nitroquinoline 1-oxide, Biochem. Biophys. Res. Commun. 139:626–632.

    Article  PubMed  CAS  Google Scholar 

  • Leadon, S.A., 1987, Production of thymine glycols in DNA by radiation and chemical carcinogens as detected by a monoclonal antibody, Br. J. Cancer 5(Suppl. 8):113–117.

    Google Scholar 

  • Leadon, S. A., Stampfer, M. R., and Bartley, J., 1988, Production of oxidative DNA damage during the metabolic activation of benzo(a)pyrene in human mammary epithelial cells correlates with cell killing, Proc. Natl Acad. Sci USA 85:4365–4368.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J. M., 1974, Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase, Science 185:529–531.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. L., Major, N., and Moon, R. C., 1984, Inhibition of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis by concomitant or postcarcinogen antioxidant exposure, Cancer Res. 44:2858–2863.

    PubMed  CAS  Google Scholar 

  • Meneghini, R., 1988, Genotoxicity of active oxygen species in mammalian cells, Mutat. Res. 195:215–230.

    Article  CAS  Google Scholar 

  • Narisawa, T., Takahashi, M., Niwa, Y., and Fujiki, H., 1989, Inhibition of methylnitrosourea-induced large bowel cancer development in rats by sarcophytol A, a product from a marine soft coral Sarcophyton glaucum, Cancer Res. 49:3287–3289.

    PubMed  CAS  Google Scholar 

  • O’Brien, P. J., 1988, Radical formation during the peroxidase catalyzed metabolism of carcinogens and xenobiotics: The reactivity of these radicals with GSH, DNA, and unsaturated lipid, Free Radical Biol. Med. 4:169–183.

    Article  CAS  Google Scholar 

  • Ochi, T., and Kaneko, M., 1989, Active oxygen contributes to the major part of chromosomal aberrations in V79 Chinese hamster cells exposed to N-hydroxy-2-naphthylamine, Free Radical Res. Commun. 5:351–358.

    Article  CAS  Google Scholar 

  • O’Connell, J. F., Klein-Szanto, A. J. P., DiGiovanni, D. M., Fries, J. W., and Slaga, T. J., 1986, Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide, Cancer Res. 46:2863–2865.

    CAS  Google Scholar 

  • Rice-Evans, C., Omorphos, S. C., and Baysal, E., 1986, Sickle cell membranes and oxidative damage, Biochem. J. 237:265–269.

    PubMed  CAS  Google Scholar 

  • Schacter, L. P., 1986, Generation of superoxide anion and hydrogen peroxide by erythrocytes from individuals with sickle trait or normal hemoglobin, Eur. J. Clin. Invest. 16:204–210.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, G., 1983, Radiation effects on DNA, Br. J. Radiol. 56:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Shacter, E., Beecham, E. J., Covey, J. M., Kohn, K. W., and Potter, M., 1988, Activated neutrophils induce prolonged DNA damage in neighboring cells, Carcinogenesis 9:2297–2304.

    Article  PubMed  CAS  Google Scholar 

  • Shasby, D. M., Shasby, S. S., and Peach, J. J., 1983, Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs, Am. Rev. Respir. Dis. 127:72–76.

    PubMed  CAS  Google Scholar 

  • Simon, R. H., Scoggin, C. H., and Patterson, D., 1981, Hydrogen peroxidase causes the fatal injury to human fibroblasts exposed to oxygen radicals, J. Biol. Chem. 256:7181–7186.

    PubMed  CAS  Google Scholar 

  • Slaga, T. J., Fisher, S. M., Nelson, K., and Gleason, G. L., 1980, Studies on the mechanism of skin tumor promotion: Evidence for several stages of promotion, Proc. Natl. Acad. Sci. USA 77:3659–3663.

    Article  PubMed  CAS  Google Scholar 

  • Slaga, T. J., Fisher, S. M., Weeks, C. E., Nelson, K., Mamrack, M., and Klein-Szanto, A. J. P., 1982, Specificity and mechanism(s) of promoter inhibitors in multistage promotion, in: Carcinogenesis, Volume 7 (E. Hecker, W. Kuntz, N. E. Fusenig, F. Marks, and H. W. Thielmann, eds.), Raven Press, New York, pp. 19–34.

    Google Scholar 

  • Srinivasan, S., and Glauert, H. P., 1990, Formation of 5-hydroxymethy 1-2′-deoxyuridine in hepatic DNA of rats treated with γ-irradiation, diethylnitrosamine, 2-acetylaminofluorene or the peroxisome proliferator ciprofibrate, Carcinogenesis 11:2021–2024.

    Article  PubMed  CAS  Google Scholar 

  • Teebor, G. W., Frenkel, K., and Goldstein, M., 1984, Ionizing radiation and tritium transmutation both cause formation of 5-hydroxymethyl-2′-deoxyuridine in cellular DNA, Proc. Natl. Acad. Sci. USA 81:318–321.

    Article  PubMed  CAS  Google Scholar 

  • Teebor, G. W., Boorstein, R. J., and Cadet, J., 1988, The repairability of oxidative free radical mediated damage to DNA: A review, Int. J. Radiat. Biol. 54:131–150.

    Article  PubMed  CAS  Google Scholar 

  • Troll, W., Frenkel, K., and Teebor, G. W., 1984, Free oxygen radicals: Necessary contributors to tumor promotion and cocarcinogenesis: in: Cellular Interactions by Environmental Tumor Promoters (H. Fujiki, E. Hecker, R. E. Moore, T. Sugimura, and I. B. Weinstein, eds.), Japan Scientific Societies Press, Tokyo, pp. 207–218.

    Google Scholar 

  • Troll, W., Wiesner, R., and Frenkel, K., 1987, Anticarcinogenic action of protease inhibitors, Adv. Cancer Res. 49:265–283.

    Article  PubMed  CAS  Google Scholar 

  • Trush, M. A., and Kensler, T. W., 1991, An overview of the relationship between oxidative stress and chemical carcinogenesis, Free Radical Biol. Med. 10:201–209.

    Article  CAS  Google Scholar 

  • Umemura, T., Sai, K., Takagi, A., Hasegawa, R., and Kurakawa, Y., 1990, Formation of 8-hy-droxydeoxyguanosine (8-OH-dG) in rat kidney DNA after intraperitoneal administration of ferric nitrilotriacetate (Fe-NTA), Carcinogenesis 11:345–347.

    Article  PubMed  CAS  Google Scholar 

  • Vercellotti, G. M., van Asbeck, B. S., and Jacob, H. S., 1985, Oxygen radical-induced erythrocyte hemolysis by neutrophils; critical role of iron and lactoferrin, J. Clin. Invest. 76:956–962.

    Article  PubMed  CAS  Google Scholar 

  • Vuillaume, M., 1987, Reduced oxygen species, mutation, induction and cancer initiation, Mutat. Res. 186:43–47.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, S., 1988, AP endonucleases and DNA glycosylases that recognize oxidative DNA damage, Environ. Mol. Mut. 12:431–477.

    Article  CAS  Google Scholar 

  • Washburn, P. C., and Di Giulio, R. T., 1988, Nitroaromatic stimulation of superoxide production in three species of freshwater fish, Mar. Environ. Res. 24:291–294.

    Article  CAS  Google Scholar 

  • Wattenberg, L. W., 1980, Inhibition of chemical carcinogenesis by antioxidants, in: Carcinogenesis, Volume 5 (T. J. Slaga, ed.), Raven Press, New York, pp. 85–98.

    Google Scholar 

  • Wei, H., and Frenkel, K., 1991 ,In vivo formation of oxidized DNA bases in tumor promoter-treated mouse skin, Cancer Res. 51:4443–4449.

    PubMed  CAS  Google Scholar 

  • Wei, H., and Frenkel, K., 1992a, 7, 12-Dimethylbenz(a)anthracene (DMBA)-mediated in vivo induction of oxidative events and oxidative DNA damage in SENCAR mice, Proc. Am. Assoc. Cancer Res. 33:180.

    Google Scholar 

  • Wei, H., and Frenkel, K., 1992b, Suppression of tumor promoter-induced oxidative events and DNA damage in vivo by sarcophytol A: A possible mechanism of anti-promotion, Cancer Res. 52:2298–2303.

    PubMed  CAS  Google Scholar 

  • Weitzman, S. A., and Gordon, L. I., 1990, Inflammation and cancer: Role of phagocyte-generated oxidants in carcinogenesis, Blood 76:655–663.

    PubMed  CAS  Google Scholar 

  • Weitzman, S. A., and Stossel, T. P., 1982, Effects of oxygen radical scavengers and antioxidants on phagocyte-induced mutagenesis, J. Immunol. 128:2770–2772.

    PubMed  CAS  Google Scholar 

  • Weitzman, S. A., Weitberg, A. B., Clark, E. P., and Stossel, T. P., 1985, Phagocytes as carcinogens: Malignant transformation produced by human neutrophils, Science 227:1231–1233.

    Article  PubMed  CAS  Google Scholar 

  • Witz, G., Goldstein, B. D., Amoruso, M., Stone, D. S., and Troll, W., 1980, Retinoid inhibition of superoxide anion radical production by human polymorphonuclear leukocytes stimulated with tumor promoters, Biochem. Biophys. Res. Commun. 97:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, Z., Tius, M., Troll, W., Fujiki, H., and Frenkel, K., 1991, Inhibition of H2O2 formation by human polymorphonuclear leukocytes (PMNs) as a measure of anti-carcinogenic activity, Proc. Am. Assoc. Cancer Res. 32:127.

    Google Scholar 

  • Zvillich, M., Kol, R., Riklis, E., and Sarov, I., 1988, Induction of DNA strand scissions in HeLa cells by human polymorphonuclear leucocytes activated by Chlamydia trachomatis elementary bodies, J. Gen. Microbiol. 134:2405–2412.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frenkel, K. (1993). The Role of Reactive Oxygen Species in Biological Damage and the Effect of Some Chemopreventive Agents. In: Troll, W., Kennedy, A.R. (eds) Protease Inhibitors as Cancer Chemopreventive Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2882-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2882-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6249-4

  • Online ISBN: 978-1-4615-2882-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics