Advertisement

Anticarcinogenic Activities of Naturally Occurring Cysteine Proteinase Inhibitors

  • Rita Colella
  • Ann F. Chambers
  • David T. Denhardt

Abstract

Proteases and their respective inhibitors are found in almost every biological system where proteolysis occurs. Examples of such systems include the processing of proteins during protein synthesis, activation of prohormones and proenzymes to their active forms, cellular protein turnover, digestion of endocytosed material, blood coagulation, angiogenesis, inflammation and wound healing, differentiation and tissue remodeling, invasion and metastasis, and possibly tumorigenesis. In both primary and secondary tumors, vascularization of the tumor tissue (angiogenesis) facilitates the growth and spread of the tumor, and this process also involves proteases and their inhibitors. Normal physiological processes require that the activities of the proteolytic enzymes be controlled so as to prevent excessive, unwanted damage to the tissues involved. Proteolytic activity can be regulated by modulating the synthesis or degradation of the enzyme or necessary cofactors, or via interactions with activators or inhibitors of activity.

Keywords

Cysteine Proteinase Cysteine Proteinase Inhibitor High Molecular Weight Kininogen Cystatin Gene Human Cystatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, M., Grubb, A., Olafsson, I., and Lundwall, A., 1987, Molecular cloning and sequence analysis of cDNA coding for the precursor of the human cysteine proteinase inhibitor cystatin C., FEBS Lett. 216:229–233.PubMedCrossRefGoogle Scholar
  2. Abrahamson, M., Olafsson, I., Palsdottier, A., Ulvsbäck, M. Lundwall, Å., Jensson, O., and Grubb, A., 1990, Structure and expression of the human cystatin gene, Biochem. J. 268:287–294.PubMedGoogle Scholar
  3. Achkar, C., Gong, Q., Frankfater, A., and Bajkowski, A. S., 1990, Differences in targeting and secretion of cathepsins B and L by BALB/3T3 fibroblasts and Moloney murine sarcoma virus-transformed BALB/3T3 fibroblasts, J. Biol. Chem. 265:13650–13654.PubMedGoogle Scholar
  4. Anastasi, A., Brown, M. A., Kembhavi, A. A., Nicklin, M. J. H., Sayer, C. A., Sunter, D. C., and Barrett, A. J., 1983, Cystatin, a protein inhibitor of cysteine proteinases, Biochem. J. 211:129–138.PubMedGoogle Scholar
  5. Baricos, W. H., Zhou, Y., Mason, R. W., and Barrett, A. J., 1988, Human kidney cathepsins B and L: Characterization and potential role in degradation of glomerular basement membrane, Biochem. J. 252:301–304.PubMedGoogle Scholar
  6. Barrett, A., 1987, The cystatins: A new class of peptidase inhibitors, Trends Biol. Sci. 12:193–196.CrossRefGoogle Scholar
  7. Barrett, A. J., Fritz, H., Grubb, A., Isemura, S., Järvinen, M., Katunuma, N., Machleidt, W., Müller-Esterl, W., Sasaki, M., and Turk, V., 1986, Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin, Biochem. J. 236:312.PubMedGoogle Scholar
  8. Bjorck, L., Grubb, A., and Kjellen, L., 1990, Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus, J. Virol. 64:941–943.PubMedGoogle Scholar
  9. Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikow, A., Brzin, J., Kos, J., and lurk, V., 1988, The 2.0 Å x-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases, EMBO J. 7:2593–2599.PubMedGoogle Scholar
  10. Bollengier, F., 1987, Cystatin C., alias post-γ-globulin: A marker for multiple sclerosis? J. Clin. Chem. Clin. Biochem. 25:589–593.PubMedGoogle Scholar
  11. Bradford, H. N., Schmaier, A. H., and Colman, R. W., 1990, Kinetics of inhibition of platelet calpain II by human kininogens, Biochem. J. 270:83–90.PubMedGoogle Scholar
  12. Brzin, J., Kopitar, M., Turk, V., and Machleidt, W., 1983, Isolation and characterization of stefin, a cytosolic inhibitor of cysteine proteinases from human polymorphonuclear granulocytes, Hoppe-Seylers Z. Physiol. Chem. 364:1475–1480.PubMedCrossRefGoogle Scholar
  13. Brzin, J., Popovic, T., Turk, V., Borchart, U., and Machleidt, W., 1984, Human cystatin, a new protein inhibitor of cysteine proteinases, Biochem. Biophys. Res. Commun. 118:103–109.PubMedCrossRefGoogle Scholar
  14. Chambers, A. F., Colella, R., Denhardt, D. T., and Wilson, S. M., 1992, Increased expression of cathepsins L and B, and decreased activity of their inhibitors, in metastatic, ras-transformed NIH 3T3 cells, Mole. Carcinogen 5:238–245.CrossRefGoogle Scholar
  15. Chauhan, S. S., Goldstein, L. J., and Gottesman, M. M., 1991, Expression of cathepsin L in human tumors, Cancer Res. 51:1478–1481.PubMedGoogle Scholar
  16. Colella, R., and Bird, J. W. C., 1993, Isolation and characterization of the chicken cystatin-encoding gene: mapping transcription start and polyadenylation sites, Gene, in press.Google Scholar
  17. Colella, R., Sakaguchi, Y., Nagase, H., and Bird, J. W. C., 1989, Chicken egg white cystatin: Molecular cloning, nucleotide sequence, and tissue distribution, J. Biol. Chem. 264:17164–17169.PubMedGoogle Scholar
  18. Denhardt, D. T., Hamilton, R. T., Parfett, C. L. J., Edwards, D. R., St. Pierre, R., Waterhouse, P., and Nilsen-Hamilton, M., 1986, Close relationship of the major excreted protein of transformed murine fibroblasts to thiol-dependent cathepsins, Cancer Res. 46:4590–4593.PubMedGoogle Scholar
  19. Denhardt, D. T., Greenberg, A. H., Egan, S. E., Hamilton, R. T., and Wright, J. A., 1987, Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts, Oncogene 2:55–59.PubMedGoogle Scholar
  20. Dong, J., and Sahagian, G. G., 1990, Basis for low affinity binding of a lysosomal cysteine protease to the cation-independent mannose-6-phosphate receptor, J. Biol. Chem. 265:4210–4217.PubMedGoogle Scholar
  21. Dong, J., Prence, E. M., and Sahagian, G. G., 1989, Mechanism for selective secretion of a lysosomal protease by transformed mouse fibroblasts, J. Biol. Chem. 264:7377–7383.PubMedGoogle Scholar
  22. Elzanowski, A., Barker, W. C., Hunt, L. T., and Seibel-Ross, E., 1988, Cystatin domains in alpha-2-HS-glycoprotein and fetuin, FEBS Lett. 277:167–170.CrossRefGoogle Scholar
  23. Erdel, M., Trefz, G., Spiess, E., Habermaas, S., Spring, H., Lah, T., and Ebert, W., 1991, Localization of cathepsin B in two human lung cancer cell lines, J. Histochem. Cytochem. 38:1313–1321.CrossRefGoogle Scholar
  24. Ghiso, J., Jensson, O., and Frangione, B., 1986, Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of γ-trace basic protein (cystatin C), Proc. Natl. Acad. Sci. USA 83:2974–2978.PubMedCrossRefGoogle Scholar
  25. Ghiso, J., Cowan, N., and Frangione, B., 1988, Isolation of a sequence encoding human cystatin C. Conservation of exon-intron structure between members of the cysteine proteinase inhibitors superfamily, Biol. Chem. Hoppe-Seyler 369(S):205–208.PubMedGoogle Scholar
  26. Goldberg, D. E., 1987, Biogenesis of lysosomal enzymes: Oligosaccharide chains, in: Lysosomes: Their Role in Protein Breakdown (H. Glauman and F. J. Ballard, eds.), Academic Press, New York, pp. 163–191.Google Scholar
  27. Gopalan, P., Dufresne, M. J., and Warner, A. H., 1986, Evidence for a defective thiol protease inhibitor in skeletal muscle of mice with hereditary muscular dystrophy, Biochem. Cell Biol. 64:1010–1019.PubMedCrossRefGoogle Scholar
  28. Green, G. D. J., Kembhavi, A. A., Davies, M. E., and Barrett, A. J., 1984, Cystatin-like cysteine proteinase inhibitors from human liver, Biochem. J. 218:939–946.PubMedGoogle Scholar
  29. Grubb, A., and Lofberg, H., 1982, Human γ-trace, a basic microprotein: Amino acid sequence and presence in the adenohypophysis, Proc. Natl. Acad. Sci. USA 79:3024–3027.PubMedCrossRefGoogle Scholar
  30. Hawley-Nelson, P., Roop, D. R., Cheng, C. K., Krieg, T. M., and Yuspa, S. H., 1988, Molecular cloning of mouse epidermal cystatin A and detection of regulated expression in differentiation and tumorigenesis, Mol. Carcinogenesis 1:202–211.CrossRefGoogle Scholar
  31. Hill, S. A., Wilson, S., and Chambers, A. F., 1988, Clonal heterogeneity, experimental metastatic ability, and p21 expression in H-ras-transformed NIH 3T3 cells, J. Natl. Caner Inst. 80:484–490.CrossRefGoogle Scholar
  32. Hiwasa, T., Sakiyama, S., Yokoyama, S., Ha, J.-M., Fujita, J., Noguchi, S., Bando, Y, Kominami, E., and Katunuma, N., 1988, Inhibition of cathepsin L-induced degradation of epidermal growth factor receptors by c-Ha-ras gene products, Biochem. Biophys. Res. Commun. 151:78–85.PubMedCrossRefGoogle Scholar
  33. Hiwasa, T., Sawada, T., and Sakiyama, S., 1990, Cysteine proteinase inhibitors and ras gene products share the same biological activities including transforming activity toward NIH3T3 mouse fibroblasts and the differentiation-inducing activity toward PC 12 rat pheochromocytoma cells, Carcinogenesis 11:75–80.PubMedCrossRefGoogle Scholar
  34. Isemura, S., Saitoh, E., and Sanada, K., 1984, Isolation and amino acid sequence of SAP-I an acidic protein of human whole saliva, and sequence homology with human γ-trace, J. Biochem. 96:489–498.PubMedGoogle Scholar
  35. Isemura, S., Saitoh, E., and Sanada, K., 1986, Characterization of a new cysteine proteinase inhibitor of human saliva, cystatin SN, which is immunologically related to cystatin S, FEBS Lett. 198:145–149.PubMedCrossRefGoogle Scholar
  36. Itoh, N., Yokota, S., Takagishi, U., Hatta, A., and Okamoto, H., 1987, Thiol proteinase inhibitor in the ascitic fluid of sarcoma 180 tumor-bearing mice, Cancer Res. 47:5560–5565.PubMedGoogle Scholar
  37. Järvinen, M., and Rinne, A., 1992, Human spleen cysteine proteinase inhibitor. Purification, fractionation into isoelectric variants and some properties of the variants, Biochim. Biophys. Acta 708:210–217.CrossRefGoogle Scholar
  38. Järvinen, M., Rinne, A., and Hopsu-Havu, V. K., 1984, Partial purification and some properties of a new papain inhibitor from psoriatic scales, J. Invest. Dermatol. 82:471–476.PubMedCrossRefGoogle Scholar
  39. Järvinen, M., Rinne, A., and Hopsu-Havu, V. K., 1987, Human cystatins in normal and diseased tissues—A review, Acta Histochem. 82:5–18.PubMedCrossRefGoogle Scholar
  40. Kellermann, J., Haupt, H., Auerswald, E.-A., and Müller-Ester, W., 1989, The arrangement of disulfide loops in human α2-HS glycoprotein, J. Biol. Chem. 264:14121–14128.PubMedGoogle Scholar
  41. Khokha, R., and Denhardt, D. T., 1989, Matrix metalloproteinases and tissue inhibitor of metal-loproteinases: A review of their role in tumorigenesis and tissue invasion, Invasion Metastasis 9:391–405.PubMedGoogle Scholar
  42. Kirschke, H., and Barrett, A. J., 1987, Chemistry of lysosomal proteases, in: Lysosomes: Their role in Protein Breakdown (H. Glauman and F. J. Ballard, eds.), Academic Press, New York, pp. 163–191.Google Scholar
  43. Kirschke, H., Kembhavi, A.A., Bohley, P., and Barrett, A. J., 1982, Action of rat liver cathepsin L on collagen and other substrates, Biochem. J. 201:367–372.PubMedGoogle Scholar
  44. Kitamura, N., Kitagawa, H., Fukushima, D., Takagaki, Y., Miyata, T., and Nakanishi, S., 1985, Structural organization of the human kininogen gene and a model for its evolution, J. Biol. Chem. 260:8610–8617.PubMedGoogle Scholar
  45. Koide, T., 1988, Human histidine-rich glycoprotein gene: Evidence for evolutionary relatedness to cystatin supergene family, Thromb. Res. Suppl. 8:91–97.Google Scholar
  46. Kolář, Z., Järvinen, M., and Negrini, R., 1989, Demonstration of proteinase inhibitors cystatin A, B and C in breast cancer and in cell lines MCF-7 and ZR-75-1, Neoplasma 36:185–189.PubMedGoogle Scholar
  47. Korant, B. D., Towatari, T., Ivanoff, L., Petteway, S., Jr., Brzin, J., Lenarcie, B., and Turk, V., 1986, Viral therapy: Prospects for protease inhibitors, J. Cell Biochem. 32:91–95.PubMedCrossRefGoogle Scholar
  48. Lah, T. T., Buck, M. B., Honn, K. V., Crissman, J. D., Rao, N. C., Liotta, L. A., and Sloane, B. F., 1989a, Degradation of laminin by human tumor cathepsin B, Clin. Exp. Metastasis 7:461–468.PubMedCrossRefGoogle Scholar
  49. Lah, T. T., Clifford, J. L., Helmer, K. M., Day, N. A., Moin, K., Honn, K. V., Crissman, J. D., and Sloane, B. F., 1989b, Inhibitory properties of low molecular mass cysteine proteinase inhibitor from human sarcoma, Biochim. Biophys. Acta 993:63–73.PubMedCrossRefGoogle Scholar
  50. Lazzarino, D., and Gabel, C.A., 1990, Protein determinants impair recognition of procathepsin L phosphorylated oligosaccharides by the cation-independent mannose 6-phosphate receptor, J. Biol. Chem. 265:11864–11871.PubMedGoogle Scholar
  51. Lenarcic, B., Krasovec, M., Ritonja, A., Olafsson, I., and Turk, V., 1991, Inactivation of human cystatin C and kininogen by human cathepsin D, FEBS Lett. 280:211–215.PubMedCrossRefGoogle Scholar
  52. Leung-Tack, J., Tavera, C., Gensac, M. C., Martinez, J., and Colle, A., 1990a, Modulation of phagocytosis-associated respiratory burst by human cystatin C: Role of the N-terminal tetrapeptide lys-pro-pro-arg, Exp. Cell Res. 188:16–22.PubMedCrossRefGoogle Scholar
  53. Leung-Tack, J., Tavera, C., Martinez, J., and Colle, A., 1990b, Neutrophil chemotactic activity is modulated by human cystatin C, an inhibitor of cysteine proteinases, Inflammation 14:247–258.PubMedCrossRefGoogle Scholar
  54. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G., 1991, Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation, Cell 64:327–336.PubMedCrossRefGoogle Scholar
  55. Machleidt, W., Borchart, U., Fritz, H., Brzin, J., Ritonja, A., and Turk, V., 1983, Primary structure of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphonuclear granulocytes, Hoppe-Seyler Z. Physiol. Chem. 364:1481–1486.PubMedCrossRefGoogle Scholar
  56. Machleidt, W., Thiele, U., Laber, B., Assfalg-Machleidt, I., Esteri, A., Wiegand, G., Kos, J., Turk, V., and Bode, W., 1989, Mechanisms of inhibition of papain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor, FEBS Lett. 243:234–238.PubMedCrossRefGoogle Scholar
  57. Maciewicz, R. A., Etherington, D. J., Kos, J., and Turk, V., 1987, Collagenolytic cathepsins of rabbit spleen: A kinetic analysis of collagen degradation and inhibition by chicken cystatin, Collagen Relat. Res. 7:295–304.CrossRefGoogle Scholar
  58. Maciewicz, R. A., Wardale, R. J., Etherington, D. J., and Paraskeva, C., 1989, Immunodetection of cathepsins B and L present in and secreted from human pre-malignant and malignant colorectal tumor cells lines, Int. J. Cancer 43:478–486.PubMedCrossRefGoogle Scholar
  59. Mannucci, P. M., Cugno, M., Bottasso, B., Marongiu, F., Maniezzo, M., Vaglini, M., and Cascinelli, N., 1990, Changes in fibrinolysis in patients with localized tumors, Eur. J. Cancer 26:83–87.PubMedCrossRefGoogle Scholar
  60. Mason, R. W., Johnson, D. A., Barrett, A. J., and Chapman, H. A. 1986a, Elastinolytic activity of human cathepsin L, Biochem. J. 233:925–927.PubMedGoogle Scholar
  61. Mason, R. W., Walker, J. E., and Northrop, F. D., 1986b, The N-terminal amino acid sequences of the heavy and light chains of human cathepsin L. Relationship to a cDNA clone for a major cysteine proteinase from a mouse macrophage cell line, Biochem. J. 240:373–377.PubMedGoogle Scholar
  62. Meloni, F. J., and Schmaier, A. H. 1991, Low molecular weight kininogen binds to platelets to modulate thrombin-induced platelet activation, J. Biol. Chem. 266:6786–6794.PubMedGoogle Scholar
  63. Mignatti, P., Robbins, E., and Rifkin, D. B., 1986, Tumor invasion through the human amniotic membrane: Requirement for a proteinase cascade, Cell 47:487–498.PubMedCrossRefGoogle Scholar
  64. Moin, K., Rozhin, J., McKernan, T. B., Sanders, V. J., Fong, D., Honn, K. V., and Sloane, B. F., 1989, Enhanced levels of cathepsin B mRNA in murine tumors, FEBS Lett. 244:61–64.PubMedCrossRefGoogle Scholar
  65. Moreau, T., Gutman, N., Moujahed, A. E., Esnard, F., and Gauthier, F., 1986, Relationship between the cysteine-proteinase-inhibitory function of rat T kininogen and the release of immu-noreactive kinin upon trypsin treatment, Eur. J. Biochem. 159:341–346.PubMedCrossRefGoogle Scholar
  66. Mort, J. S., and Recklies, A. D., 1986, Interrelationship of active and latent secreted human cathepsin B precursors, Biochem. J. 223:57–63.Google Scholar
  67. Murnane, M. J., Sheahan, K., Ozdemirli, M., and Shuja, S., 1991, Stage-specific increases in cathepsin B mRNA content in human colorectal carcinoma, Cancer Res. 51:1137–1142.PubMedGoogle Scholar
  68. Nishida, Y., Sumi, H., and Mihara, H., 1984, A thiol protease inhibitor released from cultured human malignant melanoma cells, Cancer Res. 44:3324–3329.PubMedGoogle Scholar
  69. Nishida, Y., Tsushima, H., Toki, N., Sumi, H., and Mihara, H., 1986, Thiol protease inhibitors released from human malignant melanoma, in: Cysteine Proteinase and Their Inhibitors (V. Turk, ed.), Gruyter, Berlin, pp. 751–760.Google Scholar
  70. Ohkubo, I., Kurachi, K., Takasawa, T., Shiokawa, H., and Sasaki, M., 1984, Isolation of a human cDNA for α2-thiol proteinase inhibitor and its identity with low molecular weight kininogen, Biochemistry 23:5691–5697.PubMedCrossRefGoogle Scholar
  71. Ohkubo, I., Namikawa, C., Higashiyama, S., Sasaki, M., Minowa, O., Mizuno, Y., and Shiokawa, H., 1988, Purification and characterization of β1-thiol proteinase inhibitor and its identity with kinin-and fragment 1.2-free high molecular weight kininogen, Int. J. Biochem. 20:243–258.PubMedCrossRefGoogle Scholar
  72. Olafsson, I., Gudmundsson, G., Abrahamson, M., Gensson, O., and Grubb, A., 1990, The amino terminal portion of cerebrospinal fluid cystatin C in hereditary cystatin C amyloid angiopathy is not truncated: Direct sequence analysis from agarose gel electrophoresis, Scand. J. Clin. Invest. 50:85–93.PubMedCrossRefGoogle Scholar
  73. Persky, B., Ostrowski, L. E., Pagast, P., Ahsan, A., and Schultz, R. M., 1986, Inhibition of proteolytic enzymes in the in vitro amnion model for basement membrane invasion, Cancer Res. 46:4129–4134.PubMedGoogle Scholar
  74. Portnoy, D. A., Erickson, A. H., Kochan, J., Ravetch, J. V., and Unkeless, J. C., 1986, Cloning and characterization of a mouse cysteine proteinase, J. Biol. Chem. 261:14697–14703.PubMedGoogle Scholar
  75. Prence, E. M., Dong, J., and Sahagian, G. G., 1990, Modulation of the transport of a lysosomal enzyme by PDGF, J. Cell Biol. 110:319–326.PubMedCrossRefGoogle Scholar
  76. Puri, R. N., Zhou, F., Hu, C. J., Colman, R. F., and Colman, R. W., 1991, High molecular weight kininogen inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets, Blood 77:500–507.PubMedGoogle Scholar
  77. Qian, F., Bajkowski, A. S., Steiner, D. F., Chan, S. J., and Frankfater, A., 1989, Expression of five cathepsins in murine melanomas of varying metastatic potential and normal tissues, Cancer Res., 49:4870–4875.PubMedGoogle Scholar
  78. Rawlings, N. D., and Barrett, A. J., 1990, Evolution of proteins of the cystatin superfamily, J. Mol. Evol. 30:60–71.PubMedCrossRefGoogle Scholar
  79. Rinne, A., 1980, Epidermal SH-protease inhibitor in human neoplasms and their metastases, Pathol. Res. Pract. 170:172–179.PubMedCrossRefGoogle Scholar
  80. Ritonja, A., Machleidt, W., and Barrett, A. J., 1985, Amino acid sequence of the intracellular cysteine proteinase inhibitor cystatin B from human liver, Biochem. Biophys. Res. Commun. 131:1187–1192.PubMedCrossRefGoogle Scholar
  81. Rohrlich, S. T., Seigfried, Z., Mignatti, P., Machleidt, W., Levy, H., and Rifkin, D. B., 1986, Characterization of low molecular mass cysteine proteinase inhibitors from human amniotic fluid, in: Cysteine Proteinases and Their Inhibitors (V. Turk, ed.), Gruyter, Berlin, pp. 455–471.Google Scholar
  82. Rozhin, J., Robinson, D., Steven, M. A., Lah, T. T., Honn, K. V., Ryan, R. E., and Sloane, B. F., 1987, Properties of a plasma membrane-associated cathepsin B-like cysteine proteinase in metastatic B16 melanoma variants, Cancer Res. 47:6620–6628.PubMedGoogle Scholar
  83. Rozhin, J., Gomez, A. P., Ziegler, G. H., Nelson, K. K., Chang, Y. S., Fong, D., Onoda, J. M., Honn, K. V., and Sloane, B. F., 1990, Cathepsin B to cysteine proteinase inhibitor balance in metastatic cell subpopulations isolated from murine tumors, Cancer Res. 50:6278–6284.PubMedGoogle Scholar
  84. Ryan, C. A., 1989, Proteinase inhibitor gene families: Strategies for transformation to improve plant defenses against herbivores, BioEssays 10:20–24.PubMedCrossRefGoogle Scholar
  85. Saitoh, E., Kim, H.-S., Smithies, O., and Maeda, N., 1987, Human cysteine-proteinase inhibitors: Nucleotide sequence analysis of three members of the cystatin gene family, Gene 61:329–338.PubMedCrossRefGoogle Scholar
  86. Saitoh, E., Isemura, S., Sanada, K., Kim, H.-S., Smithies, O., and Maeda, N., 1988, Cystatin superfamily: Evidence that family II cystatin genes are evolutionarily related to family III cystatin genes, Biol. Chem. Hoppe-Seyler 39:191–197.Google Scholar
  87. Salvesen, G., Parkes, C., Abrahamson, M., Grubb, A., and Barrett, A. J., 1986, Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases, Biochem. J. 234:429–434.PubMedGoogle Scholar
  88. Schelp, F. P., and Pongpaew, P., 1988, Protection against cancer through nutritionally-induced increase of endogenous proteinase inhibitors—A hypothesis, Int. J. Epidemiol. 17:287–292.PubMedCrossRefGoogle Scholar
  89. Schultz, R. M., Silberman, S., Persky, B., Bajkowski, A. S., and Carmichael, D. F., 1988, Inhibition by human recombinant tissue inhibitor of metallóproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells, Cancer Res. 48:5539–5545.PubMedGoogle Scholar
  90. Sen, L. C., and Whitaker, J. R., 1973, Some properties of a ficin-papain inhibitor from avian egg white, Arch. Biochem. Biophys. 158:623–632.PubMedCrossRefGoogle Scholar
  91. Shaw, P. A., Cox, J. L., Barka, T., and Naito, Y., 1988, Cloning and sequencing of a cDNA encoding a rat salivary cysteine proteinase inhibitor inducible by β-adrenergic agonists, J. Biol. Chem. 263:18133–18137.PubMedGoogle Scholar
  92. Sheahan, K., Shuja, S., and Murnane, M. J., 1989, Cysteine protease activities and tumor development in human colorectal carcinoma, Cancer Res. 49:3809–3814.PubMedGoogle Scholar
  93. Silver, I. A., Murrills, R. J., and Etherington, D. J., 1988, Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts, Exp. Cell Res. 175:266–276.PubMedCrossRefGoogle Scholar
  94. Sloane, B. F., Honn, K. V., Sadler, J. G., Turner, W. A., Kimpson, J. J., and Tayor, J. D., 1982, Cathepsin B activity in B16 melanoma cells: A possible marker for metastatic potential, Cancer Res. 42:980–986.PubMedGoogle Scholar
  95. Sloane, B. F., Rozhin, J., Johnson, K., Taylor, H., Crissman, J. D., and Honn, K. V., 1986, Cathepsin B: Association with plasma membrane in metastatic tumors, Proc. Natl. Acad. Sci. USA 83:2483–2487.PubMedCrossRefGoogle Scholar
  96. Sloane, B. F., Rozhin, J., Hatfield, J. S., Crissman, J. D., and Honn, K. V., 1987, Plasma membrane-associated cysteine proteinases in human and animal tumors, Exp. Cell Biol. 55:209–224.PubMedGoogle Scholar
  97. Sloane, B. F., Moin, K., Krepela, E., and Rozhin, J., 1990, Cathepsin B and its endogenous inhibitors: Their role in tumor malignancy, Cancer Metastasis Rev. 9:333–352.PubMedCrossRefGoogle Scholar
  98. Spanier, A. M., and Bird, J. W. C., 1982, Endogenous cathepsin B inhibitor activity in normal and myopathic red and white skeletal muscle, Muscle Nerve 5:313–320.PubMedCrossRefGoogle Scholar
  99. Stormorken, H., Briseid, K., Helium, B., Hoem, N. O., Johansen, H. T., and Ly, B., 1990, A new case of total kininogen deficiency, Thromb. Res. 60:457–467.PubMedCrossRefGoogle Scholar
  100. Stubbs, M. T., Laber, B., Bode, W., Huber, R., Jerala, R., Lenarcic, B., and Turk, V., 1990, The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: A novel type of proteinase inhibitor interaction, EMBO J. 9:1939–1947.PubMedGoogle Scholar
  101. Sueyoshi, T., Uwani, M., Itoh, N., Okamoto, H., Muta, T., Tokunaga, F., Takada, K., and Iwanaga, S., 1990, Cysteine proteinase inhibitor in the ascitic fluid of sarcoma 180 tumor-bearing mice is a low molecular weight kininogen, J. Biol. Chem. 265:10030–10035.PubMedGoogle Scholar
  102. Sun, Q., 1989, Growth stimulation of 3T3 fibroblasts by cystatin, Exp. Cell Res. 180:150–160.PubMedCrossRefGoogle Scholar
  103. Takio, K., Kominami, E., Wakamatsu, N., Katunuma, N., and Titani, K., 1983, Amino acid sequence of rat liver thiol proteinase inhibitor, Biochem. Biophys. Res. Commun. 115:902–908.PubMedCrossRefGoogle Scholar
  104. Takio, K., Kominami, K., Bando, Y., Katunuma, N., and Titani, K., 1984, Amino acid sequence of rat epidermal thiol proteinase inhibitor, Biochem. Biophys. Res. Commun. 121:149–154.PubMedCrossRefGoogle Scholar
  105. Troen, B. R., Gal, S., and Gottesman, M. M., 1987, Sequence and expression of the cDNA for MEP (major excreted protein), a transformation-regulated secreted cathepsin, Biochem. J. 246:731–735.PubMedGoogle Scholar
  106. Troll, W., 1989, Protease inhibitors interfere with the necessary factors of carcinogenesis, Environ. Health Perspect. 81:59–62.PubMedCrossRefGoogle Scholar
  107. Tsushima, H., and Hopsu-Havu, V. K., 1987, Cysteine proteinase inhibitors in human squamous cell carcinoma, Acta Histochem. 85:23–28.CrossRefGoogle Scholar
  108. Tsushima, H., Sumi, H., Hamanaka, K., Toki, N., Sato, H., and Mihara, H., 1985, Cysteine protease inhibitors isolated from human malignant melanoma tissue, J. Lab. Clin. Med. 106:712–717.PubMedGoogle Scholar
  109. Tsushima, H., Sumi, H., Mihara, H., Joronen, I., and Hopsu-Havu, V. K., 1988, Cysteine proteinase inhibitors in human melanoma transplanted into nude mice, Biol. Chem. Hoppe-Seyler 369(S):243–250.PubMedGoogle Scholar
  110. Tuck, A. B., Wilson, S. M., Khokha, R., and Chambers, A. F., 1991, Different patterns of gene expression in ras-resistant and ras-sensitive cells, J. Natl. Cancer Inst. 83:485–491.PubMedCrossRefGoogle Scholar
  111. Warfel, A. H., Cardozo, C., Yoo, O. H., and Zucker-Franklin, D., 1991, Cystatin C and cathepsin B production by alveolar macrophages from smokers and nonsmokers, J. Leukocyte Biol. 49:41–47.PubMedGoogle Scholar
  112. Wood, L., Yorke, G., Roisen, F., and Bird, J. W. C., 1985, A low molecular weight cysteine proteinase inhibitor from chicken skeletal muscle, in: Intracellular Protein Catabolism (J. Bond, E. Khairallah, and J. W. C. Bird, eds.), Liss, New York, pp. 81–90.Google Scholar
  113. Yagel, S., Warner, A. H., Nellans, H. N., Lala, P. K., Waghorne, C., and Denhardt, D. T., 1989, Suppression by cathepsin L inhibitors of the invasion of amnion membranes by murine cancer cells, Cancer Res. 49:3553–3557.PubMedGoogle Scholar
  114. Yamaguchi, N., Chung, S. M., Shiroeda, O., Koyama, K., and Imanishi, J., 1990, Characterization of a cathepsin L-like enzyme secreted from human pancreatic cancer cell line HPC-YP, Cancer Res. 50:658–663.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Rita Colella
    • 1
    • 3
  • Ann F. Chambers
    • 2
  • David T. Denhardt
    • 1
  1. 1.Department of Biological SciencesRutgers UniversityPiscatawayUSA
  2. 2.The London Regional Cancer CentreUniversity of Western OntarioLondonOntarioCanadaUSA
  3. 3.Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisville

Personalised recommendations