Shock and Multiple Organ Failure

  • Patricia A. Abello
  • Timothy G. Buchman
  • Gregory B. Bulkley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


Multiple organ dysfunction syndrome (MODS), previously known as multiple organ failure, has emerged as the leading cause of mortality in surgical critical care. It is a syndrome of sequential and progressive organ dysfunction, associated with a sustained, massive inflammatory response that is often preceded by insults such as sepsis, hemorrhagic shock, inflammatory states such as pancreatitis, and tissue injury. Classically, organ involvement occurs in a predictable sequence, initially involving the lung, then the liver, then the gut, and other organs. With four organ system involvement, mortality approaches 100%. Once the process is initiated, MODS often progresses despite eradication of the inciting cause.


Reperfusion Injury Xanthine Oxidase Hemorrhagic Shock Bacterial Translocation Multiple Organ Dysfunction Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.L. Tilney, G.L. Bailey, and A.P. Morgan, Sequential system failure after rupture of abdominal aortic aneurysms: an unsolved problem in postoperative care, Ann Surg 178:117 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Beutler, D. Greenwald, J.D. Huhnes, M. Chang, Y.-C.E. Pan, J. Mathison, R. Ulevitch, and A. Cerami, Identity of tumour necrosis factor and the macrophage-secreted factor cachectin, Nature 316(8):552 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    K.J. Tracey, B. Beutler, S.F. Lowry, et al., Shock and tissue injury induced by recombinant human cachectin, Science 234:470 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee, Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis, Crit Care Med 20(6):864 (1992).CrossRefGoogle Scholar
  5. 5.
    R.J.A. Goris, T.P.A. te Boekhorst, J.K.S. Nuytinck, and J.S.F. Gimbrere, Multiple-organ failure, Arch Surg 120:1109 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    F.B. Cerra, Hypermetabolism, organ failure, and metabolic support, Surgery 101(1): 1 (1987).PubMedGoogle Scholar
  7. 7.
    J.R. Border, Multiple systems organ failure, Arch Surg 216(2):111 (1992).Google Scholar
  8. 8.
    U. Haglund, G.B. Bulkley, and D.N. Granger, On the pathophysiology of intestinal ischemic injury, Acta Chir Scand 153:321 (1987).PubMedGoogle Scholar
  9. 9.
    U. Haglund and O. Lundgren, Intestinal ischemia and shock factors, Federation Proc 37:2729 (1978).Google Scholar
  10. 10.
    K.J. Tracey, U. Fong, D.G. Hesse, et al., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia, Nature 330(17):662 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    M.G. Cary, K.S. Guice, K.T. Oldham, D.G. Remick, and S.L. Kunkel, Evidence for tumor necrosis factorinduced pulmonary microvascular injury after intestinal ischemia-reperfusion injury, Ann Surg 212(6): 694 (1990).CrossRefGoogle Scholar
  12. 12.
    L.M. Colletti, D.G. Remick, G.D. Burtch, S.L. Kunkel, R.M. Strieter, and D.A. Cambell, Jr., Role of tumor necrosis factor-∝ in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat, J Clin Invest 85:1936 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Fischer, M.A. Marano, A.E. Barber, et al., Comparison between effects of interleukin-1 ∝ administration and sublethal endotoxemia in primates, Am J Physiol 261: R442 (1991).PubMedGoogle Scholar
  14. 14.
    J.L. Wallace, G Steel, B.J.R. Whittle, V. Lagente, and B. Vargaftig, Gastroenterology 93:765 (1987).PubMedGoogle Scholar
  15. 15.
    P. Kubes, G Ibbotson, J. Russell, et al., Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence, Am J Physiol 259:G300 (1990).PubMedGoogle Scholar
  16. 16.
    S. Chang, C.O. Feddersen, P.M. Henson, and N.F. Voelkel, Platelet-activating factor mediates hemodynamic changes and lung injury in endotoxin-treated rats, J Clin Invest 79:1498 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    C. Thiemermann and J. Vane, Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo, Eur J Pharm 182:591 (1990).CrossRefGoogle Scholar
  18. 18.
    G. Julou-Schaeffer, G.A. Gray, I. Fleming, C. Schott, J.R. Parratt, and J.C. Stoclet, Activation of the L-argimne-nitric oxide pathway is involved in vascular hyporeactivity induced by endotoxin, J Cardiovasc Pharm 17(Suppl. 3):S207 (1991).CrossRefGoogle Scholar
  19. 19.
    E. Neugebauer, W. Lorenz, D. Maroske, and W. Barthlen, Mediators in septic shock: strategies of securing them and assessment of their causal significance, Chirurg, 58(7):470 (1987) (English abstract).PubMedGoogle Scholar
  20. 20.
    E.J. Ziegler, C.J. Fisher, Jr., C.L. Sprung, et al., Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin, N Engl J Med 324:429 (1991).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Fine, E.D. Frank, H.A. Ravin, S.H. Rutenberg, and F.B. Schweinburg, The bacterial factor in traumatic shock, N Engl J Med 260:214 (1959).PubMedCrossRefGoogle Scholar
  22. 22.
    J.C. Marshall and J.L. Meakins, The gastrointestinal tract: the ‘motor’ of MOF, Arch Surg 121:197 (1986).Google Scholar
  23. 23.
    E.A. Deitch, R. Berg, and R. Specian, Endotoxin promotes the translocation of bacteria from the gut, Arch Surg 122:185 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    A.J. Son, B.F. Rush, Jr., T.W. Lysz, S. Smith, and G.W. Machiedo, The gut as source of sepsis after hemorrhagic shock, Am J Surg 155:187 (1988).CrossRefGoogle Scholar
  25. 25.
    A.B. Peitzman, A.O. Udekwu, J. Ochoa, and S. Smith, Bacterial translocation in trauma patients, J Trauma 31(8):1083 (1991).PubMedGoogle Scholar
  26. 26.
    P.M. Reilly, S. MacGowan, M. Miyachi, H.J. Schiller, S. Vickers, and G.B. Bulkley, Mesenteric vasoconstriction in cardiogenic shock in pigs, Gastroenterology 102:1968 (1992).PubMedGoogle Scholar
  27. 27.
    D.N. Granger, G Rutilli, and J.M. McCord, Superoxide radicals in feline intestinal ischemia, Gastroenterology 81:22 (1981).PubMedGoogle Scholar
  28. 28.
    D.A. Parks, G.B. Bulkley, D.N. Granger, et al., Ischemic injury in the cat small intestine: role of superoxide radicals, Gastroenterology 82:9 (1982).PubMedGoogle Scholar
  29. 29.
    P.M. Reilly, H.J. Schiller, and G.B. Bulkley, Reactive oxygen metabolites in shock, in: “Care of the Surgical Patient,” D.W. Wilmore, M.F. Brennan, A.H. Harken, J.W. Holcroft, and J.L. Meakins, eds., Scientific American, New York (1991).Google Scholar
  30. 30.
    D.N. Granger, M.E. Hollwarth, and D.A. Parks, Ischemia-reperfusion injury: role of oxygen-derived free radicals, Acta Physiol Scand Suppl 548:47 (1986).PubMedGoogle Scholar
  31. 31.
    D.A. Parks and D.N. Granger, Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals, Am J Physiol 245:G285 (1983).PubMedGoogle Scholar
  32. 32.
    L.A. Hernandez, M.B. Grisham, and D.N. Granger, A role for iron in oxidant-mediated ischemic injury to intestinal microvasculature, Am J Physiol 253:G49 (1987).PubMedGoogle Scholar
  33. 33.
    L.A. Hernandez, M.B. Grisham, B. Twohig, et al., Role of neutrophils in ischemia-reperfusion-induced microvascular injury, Am J Physiol 253:H699 (1987).PubMedGoogle Scholar
  34. 34.
    D. Adkison, M.E. Hollwarth, J.N. Benoit, et al., Role of free radicals in ischemia-reperfusion injury to the liver, Acta Physiol Scand Suppl 548:101 (1986).PubMedGoogle Scholar
  35. 35.
    G Nordstrom, T. Seeman, P.O. Hasselgren, Beneficial effect of allopurinol in liver ischemia, Surgery 97:679 (1985).PubMedGoogle Scholar
  36. 36.
    A. Kooij, W.M. Frederiks, R. Gossarau, and C. Van Noorden, Localization of xanthine oxidoreductase activity using the tissue protectant polyvinyo alcohol and final electron acceptor tetranitro BT,. J H is tochem and Cytochem 39(1):87 (1991).CrossRefGoogle Scholar
  37. 37.
    H. Sanfey, G.B. Bulkley, and J.L. Cameron, The pathogenesis of acute pancreatitis: the source and role of oxygen-derived free radicals in three different experimental models, Ann Surg 201:633 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    J.R. Stewart, S.L. Crute, V. Loughlin, et al., Prevention of free radical-induced myocardial reperfusion injury with allopurinol, J Thorac Cardiovasc Surg 90:68 (1985).PubMedGoogle Scholar
  39. 39.
    M.S. Paller, J.R. Hoidal, and T.F. Ferris, Oxygen free radicals in ischemic acute renal failure in the rat, J Clin Invest 74:1156 (1984).PubMedCrossRefGoogle Scholar
  40. 40.
    T.H. Liu, J.S. Beckman, BA. Freeman, et al., Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury, Am J Physiol 256:H589 (1989).PubMedGoogle Scholar
  41. 41.
    S. Vickers, J. Hildreth, F. Kujada, et al., Immunohistoaffmity localization of xanthine oxidase in the microvascular endothelial cells of porcine and human organs, Circ Shock 31:87 (1990) (Abstract).Google Scholar
  42. 42.
    R.E. Ratych, R.S. Chuknyiska, and G.B. Bulkley, The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells, Surgery 102:122 (1987).PubMedGoogle Scholar
  43. 43.
    H.J. Schiller, S. Vickers, J. Hildreth, I. Mather, F. Kujada, and G.B. Bulkley, Immunoaffmity localization of xanthine oxidase on the outside surface of the endothelial cell plasma membrane, Circ Shock 34:A435 (1991).Google Scholar
  44. 44.
    T.G. Buchman, D.E. Cabin, S. Vickers, C.S. Deutschman, E. Delgado, M.M. Sussman, and G.B. Bulkley, Molecular biology of circulatory shock. Part II. Expression of four groups of hepatic genes is enhanced after resuscitation from cardiogenic shock, Surgery 108:559 (1990).PubMedGoogle Scholar
  45. 45.
    W.J. Welch, The mammalian stress response: cell physiology and biochemistry of stress proteins, in: “Stress Proteins in Biology and Medicine,” R.I. Morimoto, A. Tissieres, and C. Georgopoulos, eds., Cold Spring Laboratory Press, Cold Spring Harbor (1990).Google Scholar
  46. 46.
    L.O. Schoeniger, P.M. Reilly, G.B. Bulkley, and T.G. Buchman, Heat-shock gene expression excludes hepatic acute-phase gene expression after resuscitation from hemorrhagic shock, Surgery 112:355 (1992).PubMedGoogle Scholar
  47. 47.
    D.E. Cabin and T.G. Buchman, Molecular biology of circulatory shock. Part III. Human hepatoblastoma (HepG2) cells demonstrate two patterns of shock-induced gene expression that are independent, exclusive, and prioritized, Surgery 108:902 (1990).PubMedGoogle Scholar
  48. 48.
    L.O. Schoeniger, K.A. Andreoni, G.R. Ott, T.H. Risby, G.B. Bulkley, R. Udelsman, J.F. Burdick, T.G. Buchman, Induction of heat-shock gene expression in postischemic pig liver depends on superoxide generation. Gastroenterology 106:177 (1994).PubMedGoogle Scholar
  49. 49.
    T.G. Buchman, P.A. Abello, E.H. Smith, and G.B. Bulkley, Induction of heat shock response leads to apoptosis in endothelial cells previously exposed to endotoxin, Am J Physiol 265:H165 (1993).PubMedGoogle Scholar
  50. 50.
    J.F.R. Kerr, A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics, Br J Cancer 26:239 (1972).PubMedCrossRefGoogle Scholar
  51. 51.
    A.H. Wyllie, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 284:555 (1980).PubMedCrossRefGoogle Scholar
  52. 52.
    P.A. Abello, S.F. Fidler, G.B. Bulkley, and T.G. Buchman, Antioxidants modulate induction of programmed endothelial cell death (apoptosis) by endotoxin, Arch Surg 129:134 (1994).PubMedCrossRefGoogle Scholar
  53. 53.
    D.M. Hockenberry, Z.N. Oltvai, X.M. Yin, C.L. Milliman, and S.J. Korsmeyer, Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75:241 (1993).CrossRefGoogle Scholar
  54. 54.
    D. Hockenberry, G Nunez, C. Milliman, R.D. Schreiber, and S.J. Korsmeyer, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature 348:334 (1990).CrossRefGoogle Scholar
  55. 55.
    G.B. Bulkley, Endothelial xanthine oxidase: a radical transducer of inflammatory signals for reticuloendothelial activation, Br J Surg 80:684 (1993).PubMedCrossRefGoogle Scholar
  56. 56.
    H.P. Friedl, G.O. Till, U.S. Ryan, et al., Mediator-induced activation of xanthine oxidase in endothelial cells, FASEB J 3:2512 (1989).PubMedGoogle Scholar
  57. 57.
    J.M. Daly, M.D. Lieberman, J. Goldfine, J. Shou, F. Weintraub, E.F. Rosato, and P. Lavin, Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: immunologic, metabolic, and clinical outcome, Surgery 112:55 (1992).Google Scholar
  58. 58.
    J. Cohen, A.R. Exley, W. Buutman, R. Own, G. Hanson, J. Lumley, J.M. Aulakh, M. Bodmer, A. Riddle, S. Stephens, and M. Perry, Monoclonal antibody to TNF in severe septic shock, Lancet 335:1275 (1990).PubMedCrossRefGoogle Scholar
  59. 59.
    E.A. Deitch, A.C. Kemper, R.D. Specian, and R.D. Berg, A study of the relationships among survival, gut-origin sepsis, and bacterial translocation in a model of systemic inflammation, J Trauma 32(2): 141 (1992).PubMedCrossRefGoogle Scholar
  60. 60.
    S. Zhi-Yong, D. Yuan-Lin, and W. Xiao-Hong, Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion, J Trauma 32(2): 148 (1992).PubMedCrossRefGoogle Scholar
  61. 61.
    R.J.A. Goris, W.K.F. Boekholtz, I.P.T. van Bebber, J.K.S. Nuytinck, and P.H.M. Schillings, Multiple-organ failure and sepsis without bacteria, Arch Surg 121:897 (1986).PubMedCrossRefGoogle Scholar
  62. 62.
    I.P.T. van Bebber, C.F.J. Lieners, E.L. Koldewijn, H. Redl, and R.J.A. Goris, Superoxide dismutase and catalase in an experimental model of multiple organ failure, J Surg Research 52:265 (1992).CrossRefGoogle Scholar
  63. 63.
    R.W. Bailey, G.B. Bulkley, S.R. Hamilton, J.B. Morris, and U.H. Haglund, Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock, Am J Surg 153:108 (1987).PubMedCrossRefGoogle Scholar
  64. 64.
    C.J. Wiggers. “Physiology of Shock.” New York: The Commonwealth Fund, 1950.Google Scholar
  65. 65.
    P. Wang, Z.F. Ba, and I.H. Chaudry, Hepatic extraction of indocyanine green is depressed early in sepsis despite increased hepatic blood flow and cardiac output, Arch Surg 126(2):219 (1991).PubMedCrossRefGoogle Scholar
  66. 66.
    W.J. Schirmer, J.M. Schirmer, G.B. Naff, D.E. Fry, Complement activation in peritonitis. Association with hepatic and renal perfusion abnormalities. Am Surg 53(12):683 (1987).PubMedGoogle Scholar
  67. 67.
    M. Sodeyama, K.R. Gardiner, S.J. Kirk, G Efron, and A. Barbul, Sepsis impairs gut amino acid absorption, Am J Surg 165(1): 150 (1993).PubMedCrossRefGoogle Scholar
  68. 68.
    H.P. Madden, R.J. Breslin, H.L. Wasserkrug, G. Efron, and A. Barbul, Stimulation of T cell immunity by arginine enhances survival in peritonitis, J Surg Res 44(6): 658 (1988).PubMedCrossRefGoogle Scholar
  69. 69.
    R.J.A. Goris, I.P.T. van Bebber, R.M. Mollen, and J.P. Koopman, Does selective decontamination of the gastrointestinal tract prevent multiple organ failure? An experimental study, Arch Surg 126(5):561 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Patricia A. Abello
    • 1
  • Timothy G. Buchman
    • 1
  • Gregory B. Bulkley
    • 1
  1. 1.Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations