Autoimmune and Inflammatory Diseases

  • Jonathan A. Leff
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


Toxic oxygen radicals (collectively called reactive oxygen species, ROS) are intricately related to a vast number of disease processes including a variety of autoimmune and inflammatory disorders1. It is difficult to directly measure ROS because of their extremely short half-life. However, the reactions in which they participate often leave measurable markers (“footprints”) that reflect oxidant activity. Primarily four strategies have evolved to detect oxidant activity for diagnostic purposes:1) measuring products of oxidation, for example lipid peroxides or oxidized glutathione (GSSG); 2) measuring the release of products from damaged cells, for example the release of hepatic enzymes during acute hepatitis; 3) measuring antioxidant enzyme activities which may reflect the systemic compensation to oxidant stress; 4) ROS can be directly measured although the technology is complex and imperfect, the methodology somewhat complicated, and the equipment cost often prohibitive. In this review, I will discuss sources of selected oxidant markers, methodologies involved in their measurement, and their relevance to the diagnosis and management of several autoimmune and inflammatory diseases.


Human Immunodeficiency Virus Rheumatoid Arthritis Patient Synovial Fluid Primary Biliary Cirrhosis Septic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.E. Cross, Oxygen radicals and human disease, Ann. Intern. Med. 107:526–545 (1987).PubMedGoogle Scholar
  2. 2.
    H. Aebi, Catalase in Vitro, in: “Methods in Enzymology: Oxygen radicals in biological systems. Volume 105”, L. Packer., ed., Academic Press, Inc., Orlando, pp. 121–126 (1984).CrossRefGoogle Scholar
  3. 3.
    J.A. Leff, M.A. Oppegard, L.S. Terada, E.C. McCarty, and J.E. Repine, Human serum catalase decreases endothelial cell injury from hydrogen peroxide, J. Appl. Phvsiol. 71(5): 1903–1906 (1991).Google Scholar
  4. 4.
    L. Goth, Origin of serum catalase activity in acute pancreatitis, Clin. Chim. Acta 186:39–44 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Goth, H. Nemeth, and I. Meszaros, Serum catalase activity for detection of hemolytic diseases [letter], Clin. Chem. 29:741–743 (1983).PubMedGoogle Scholar
  6. 6.
    J.A. Leff, P.E. Parsons, C.E. Day, E.E. Moore, F.A. Moore, M.A. Oppegard, and J.E. Repine, Increased serum catalase activity in septic patients with the adult respiratory distress syndrome, Am. Rev. Respir. Dis. 146:985–989 (1992).PubMedGoogle Scholar
  7. 7.
    P.A. Sandstrom and T.M. Buttke, Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium, Proc. Natl. Acad. Sci. U. S. A. 90:4708–4712 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    J.M. McCord and I. Fridovich, Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244:6049–6055 (1969).PubMedGoogle Scholar
  9. 9.
    S.L. Marklund, Human copper-containing superoxide dismutase of high molecular weight, Proc. Natl. Acad. Sci. USA 79:7634–7638 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    B.B. Keele, Jr., J.M. McCord, and I. Fridovich, Superoxide dismutase from escherichia coli B: A new manganese-containing enzyme, J. Biol. Chem. 245:6176–6181 (1970).PubMedGoogle Scholar
  11. 11.
    N. Taniguchi, Clinical significances of superoxide dismutases: changes in aging, diabetes, ischemia, and cancer. Adv. Clin. Chem. 29:1–59 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Kawaguchi, K. Suzuki, Y. Matsuda, T. Nishiura, T. Uda, M. Ono, C. Sekiya, M. Ishikawa, S. Iino, Y. Endo, and N. Taniguchi, Serum Mn-superoxide dismutase: Normal values and increased levels in patients with acute myocardial infarction and several malignant diseases determined by enzyme-linked immunosorbent assay using a monoclonal antibody, J. Immunol. Meth. 127:249–254 (1990).CrossRefGoogle Scholar
  13. 13.
    B. Frei, Y. Yamamoto, D. Niclas, and B.N. Ames, Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human blood plasma, Anal. Biochem. 175:120–130 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Yamamoto, B. Frei, and B.N. Ames, Assay of lipid hydroperoxides using high-performance liquid chromatography with isoluminol chemiluminescence, Methods Enzvmol. 186:371–380 (1990).CrossRefGoogle Scholar
  15. 15.
    A. Nahum, L.D.H. Wood, and J.I. Sznajder, Measurement of hydrogen peroxide in plasma and blood, Free Radic. Biol. Med. 6:479–484 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    S.D. Varma and P.S. Devamanoharan, Excretion of hydrogen peroxide in human urine, Free Rad. Res. Comms. 8:73–78 (1990).CrossRefGoogle Scholar
  17. 17.
    S.R. Baldwin, R.H. Simon, C.H. Grum, L.H. Ketai, L.A. Boxer, and L.J. Devall, Oxidant activity in expired breath of patients with adult respiratory distress syndrome. Lancet 1:11–14 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    M.D. Williams and B. Chance, Spontaneous chemiluminescence of human breath: spectrum, lifetime, temporal distribution and correlation with peroxide, J. Biol. Chem. 258:3628–3631 (1983).PubMedGoogle Scholar
  19. 19.
    J.I. Sznajder, A. Fraiman, J.B. Hall, W. Sanders, G. Schmidt, G. Crawford, A. Nahum, P. Factor, and L.D.H. Wood, Increased hydrogen peroxide in the expired breath of patients with acute hypoxemic respiratory failure, Chest 96:606–612 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    J.A. Leff, C.P. Wilke, B.M. Hybertson, P.F. Shanley, C.J. Beehler, and J.E. Repine, Post-insult treatment with N-acetylcysteine decreases interleukin-1-induced lung neutrophil sequestration and oxidative lung leak in rats, Am. J. Physiol. 265:L501–L506 (1993).PubMedGoogle Scholar
  21. 21.
    J.J. Hageman, A. Bast, and N.P.E. Vermeulen, Monitoring of oxidative free radical damage in vivo: Analytical aspects, Chem. Biol. Interactions 82:243–293 (1992).CrossRefGoogle Scholar
  22. 22.
    J.E. Repine, Scientific perspectives on adult respiratory distress syndrome, Lancet 339:466–469 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    J.A. Leff, P.E. Parsons, C.E. Day, N. Taniguchi, M. Jochum, H. Fritz, F.A. Moore, E.E. Moore, J.M. McCord, and J.E. Repine, Serum antioxidants as predictors of adult respiratory distress syndrome in patients with sepsis, Lancet 341:777–780 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    W.C. Wilson, J.F. Swetland, J.L. Benumof, P. Laborde, and R. Taylor, General anesthesia and exhaled breath hydrogen peroxide, Anesthesiology 76:703–710 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    G.R. Bernard, B.B. Swindell, M.J. Meredith, F.E. Carroll, and S.B. Higgins, Glutathione (GSH) repletion by N-acetylcysteine in patients with the Adult Respiratory Distress Syndrome, Am. Rev. Resp. Dis. 139:A221 (1989) (Abstract).CrossRefGoogle Scholar
  26. 26.
    E.R. Pacht, A.P. Timerman, M.G. Lykens, and A.J. Merola, Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome, Chest 100:1397–1403 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Bunnell and E.R. Pacht, Oxidized glutathione is increased in the alveolar fluid of patients with the adult respiratory distress syndrome, Am. Rev. Resp. Dis. 148:1174–1178 (1993).PubMedGoogle Scholar
  28. 28.
    C. Richard, F. Lemonnier, M. Thibault, M. Couturier, and P. Auzepy, Vitamin E deficiency and lipoperoxidation during adult respiratory distress syndrome, Crit. Care. Med. 18:4–9 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    C.G. Cochrane, R.G. Spragg, and S.D. Revak, Pathogenesis of the adult respiratory distress syndrome: evidence of oxidant activity in bronchoalveolar lavage fluid. J. Clin. Invest. 71:754–758 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    B. Halliwell and C.E. Cross, Reactive oxygen species, antioxidants, and acquired immunodeficiency syndrome. Sense or speculation? Arch. Intern. Med. 151:29–31 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    R. Buhl, K.J. Holroyd, A. Mastrangeli, A.M. Cantin, H.A. Jaffe, F.B. Wells, C. Santini, and R.G. Crystal, Systemic glutathione deficiency in symptom-free HIV-seropositive individuals, Lancet 2:1294–1298 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    J.J. Javier, M.K. Fodyce-Baum, R.S. Beach, M. Gavancho, C. Cabrejos, and E. Mantero-Atienza, Antioxidant micronutrients and immune function in HIV-1 infection, FASEB Proc. 4:A940 (1990).Google Scholar
  33. 33.
    B.M. Dworkin, W.S. Rosenthal, G.P. Wormser, and L. Weiss, Selenium deficiency in the acquired immune deficiency syndrome, J. Parenter. Ent. Nutr. 10:405–407 (1986).CrossRefGoogle Scholar
  34. 34.
    J.A. Leff, M.A. Oppegard, T.J. Curiel, K.S. Brown, R.T. Schooley, and J.E. Repine, Progressive increases in serum catalase activity in advancing human immunodeficiency virus infection. Free Radical Biol. Med. 13:143–149 (1992).CrossRefGoogle Scholar
  35. 35.
    Y. Ozaki, T. Ohashi, and S. Kume, Potentiation of neutrophil function by recombinant DNA-produced interleukin-1a, J. Leukocyte Biol. 42(6):621–627 (1987).PubMedGoogle Scholar
  36. 36.
    B. Halliwell, J.R. Hoult, and D.R. Blake, Oxidants, inflammation, and anti-inflammatory drugs. FASEB J. 2:2867–2873 (1988).PubMedGoogle Scholar
  37. 37.
    J. Unsworth, J. Outhwaite, D.R. Blake, C.J. Morris, J. Freeman, and J. Lunec, Dynamic studies of the relationship between intraarticular pressure, synovial fluid oxygen tension and lipid peroxidation in the inflamed knee: an example of reperfusion injury, Annu. Clin. Biochem. 25:8S–11S (1988).Google Scholar
  38. 38.
    J. Lunec, S.P. Halloran, A.G. White, and T.L. Dormandy, Free-radical oxidation (peroxidation) products in serum and synovial fluid in rheumatoid arthritis, J. Rheumatol. 8:233–245 (1981).PubMedGoogle Scholar
  39. 39.
    D. Rowley, J.M.C. Gutteridge, D. Blake, M. Farr, and B. Halliwell, Lipid peroxidation in rheumatoid arthritis: thiobarbituric acid-reactive material and catalytic iron salts in synovial fluid from rheumatoid patients, Clin. Sci. 66:691–695 (1984).PubMedGoogle Scholar
  40. 40.
    U. Ambanelli, A. Spisni, and G.F. Ferraccioli, Serum antioxidant activity and related variables in rheumatoid arthritis. Behaviour during sulphydrylant treatment. Scand. J. Rheumatol. 11:203–207 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    A. Imadaya, K. Terasawa, H. Tosa, M. Okamoto, and K. Toriizuka, Erythrocyte antioxidant enzymes are reduced in patients with rheumatoid arthritis, J. Rheumatol. 15:1628–1631 (1988).PubMedGoogle Scholar
  42. 42.
    P. Scudder, J. Stocks, and T.L. Dormandy, The relationship between erthrocyte superoxide dismutase activity and erythrocyte copper levels in normal subjects and in patients with rheumatoid arthritis. Clin. Chem. Acta 69:397–403 (1976).CrossRefGoogle Scholar
  43. 43.
    J.C. Banford, D.H. Brown, R.A. Hazelton, C.J. McNeil, R.D. Sturrock, and W.E. Smith, Serum copper and erythrocyte superoxide dismutase in rheumatoid disease. Ann. Rheum Dis. 41:458–462 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    R.D. Situnayake, D.I. Thurnham, S. Kootathep, S. Chirico, J. Lunec, M. Davis, and B. McConkey, Chain breaking antioxidant status in rheumatoid arthritis: clinical and laboratory correlates. Ann. Rheum Dis. 50:81–86 (1991).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Lunec, D.R. Blake, S.J. McCleary, S. Brailsford, and P.A. Bacon, Self-perpetuating mechanisms of immunoglobulin G aggregation in rheumatoid arthritis. J. Clin. Invest. 76:2084–2090 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Grootveld, E.B. Henderson, A. Farrell, D.R. Blake, H.G. Parkes, and P. Haycock, Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal lowmolecular-mass metabolites by proton-n.m.r. spectroscopy, Biochem. J. 273:459–467 (1991).PubMedGoogle Scholar
  47. 47.
    M. Grootveld and B. Halliwell, Measurement of allantoin and uric acid in human body fluids — A potential index of free radical reactions in vivo? Biochem. J. 243:803–808 (1987).PubMedGoogle Scholar
  48. 48.
    M. Ono, C. Sekiya, M. Ohhira, M. Namiki, Y. Endo, K. Suzuki, Y. Matsuda, and N. Taniguchi, Elevated level of serum Mn-superoxide dismutase in patients with primary biliary cirrhosis: possible involvement of free radicals in the pathogenesis in primary biliary cirrhosis, J. Lab. Clin. Med. 118:476–483 (1991).PubMedGoogle Scholar
  49. 49.
    T. Matsubara and M. Ziff, Increased superoxide anion release from human endothelial cells in response to cytokines. J. Immunol. 137:3295–3298 (1986).PubMedGoogle Scholar
  50. 50.
    S.J. Klebanoff, M.A. Vadas, J.M. Harlan, L.H. Sparks, J.R. Gamble, J.M. Agosti, and A.M. Waltersdorph, Stimulation of neutrophils by tumor necrosis factor. J. Immunol. 136:4220–4225 (1986).PubMedGoogle Scholar
  51. 51.
    L. Goth, I. Meszaros, and H. Nemeth, Serum catalase enzyme activity in liver diseases, Acta. Biol. Hung. 38:287–290 (1987).PubMedGoogle Scholar
  52. 52.
    I. Meszaros, L. Goth, and G. Vattay, The value of serum catalase activity determinations in acute pancreatitis. Digestive Diseases 18:1035–1041 (1973).CrossRefGoogle Scholar
  53. 53.
    J.A. Leff, L.K. Burton, E.M. Berger, B.O. Anderson, C.P. Wilke, and J.E. Repine, Increased serum catalase activity in rats subjected to thermal skin injury. Inflammation 17:199–204 (1993).PubMedCrossRefGoogle Scholar
  54. 54.
    T. Nishiura, K. Suzuki, T. Kawaguchi, H. Nakao, N. Kawamura, M. Taniguchi, Y. Kanayama, T. Yonezawa, S. Iizuka, and N. Taniguchi, Elevated serum manganese superoxide dismutase in acute leukemias. Cancer Lett. 62:211–215 (1992).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Ishikawa, Y. Yaginuma, H. Hayashi, T. Shimizu, Y. Endo, and N. Taniguchi, Reactivity of a monoclonal antibody to manganese superoxide dismutase with human ovarian carcinoma, Cancer Res. 50:2538–2542 (1990).PubMedGoogle Scholar
  56. 56.
    P. Suryaprabha, U.N. Das, G. Ramesh, K.V. Kumar, and G.S. Kumar, Reactive oxygen species, lipid peroxides and essential fatty acids in patients with rheumatoid arthritis and systemic lupus erythematosus, Prostaglandins Leukot. Essent. Fatty. Acids 43:251–255 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jonathan A. Leff
    • 1
  1. 1.Webb-Waring Institute for Biomedical Reearch, School of MedicineUniversity of ColoradoDenverUSA

Personalised recommendations