Skip to main content

Abstract

Stem cells are the primitive cells present in all organisms that can divide and give rise to more stem cells or switch to become more specialized cells, such as those of the blood, brain, heart or liver. Embryonic stem (ES) cells are present very early in development and can give rise to all tissues of the adult individual. There are therefore termed “pluripotent”. Stem cells are also present in some adult tissues capable of regeneration and repair after injury although in very small numbers. Probably exceptionally, the adult heart contains no stem cells and is incapable of repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yatskievych, TA, Ladd, AN, Antin, PB. Induction of cardiac myogenesis in avian pregastrula epiblast: the role of the hypoblast and activin. Development 1997;124:2561–70.

    PubMed  CAS  Google Scholar 

  2. Nascone N, Mercola M. An inductive role for the endoderm in Xenopus cardiogenesis. Development 1995;121:515–23.

    PubMed  CAS  Google Scholar 

  3. Mummery CL, Feijen A, van der Saag PT, van den Brink CE, de Laat SW. Clonal variants of differentiated P19 embryonal carcinoma cells exhibit epidermal growth factor receptor kinase activity. Dev Bio1.1985;109:402–10.

    Google Scholar 

  4. Mummery CL, van Achterberg TA, van den Eijnden-van Raaij AJ, van Haaster L, Willemse A, de Laat SW, Piersma AH. Visceral-endoderm-like cell lines induce differentiation of murine P19 embryonal carcinoma cells. Differentiation 1991;46:51–60.

    Article  PubMed  CAS  Google Scholar 

  5. van den Eijnden-van Raaij Ai, van Achterberg TA, van der Kruijssen CM, Piersma AH, Huylebroeck D, de Laat SW, Mummery CL. Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech Dev. 1991;33:157–65.

    Article  Google Scholar 

  6. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Bio1.1994;164:87–101.

    Article  CAS  Google Scholar 

  7. Dyer, MA, Farrington, SM, Mohn, D, Munday, JR, Baron, MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 2001;128:1717–30

    PubMed  CAS  Google Scholar 

  8. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404.

    Article  PubMed  CAS  Google Scholar 

  9. Pera MF, Cooper S, Mills J, Parrington JM. Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation 1989;42:10–23.

    Article  PubMed  CAS  Google Scholar 

  10. Slager HG, Van Inzen W, Freund E, Van den Eijnden-Van Raaij AJ, Mummery CL. Transforming growth factor-beta in the early mouse embryo: implications for the regulation of muscle formation and implantation. Dev Genet.1993;14:212–24.

    Article  PubMed  CAS  Google Scholar 

  11. Peeters G.A., Sanguinetti, M.C, Eki, Y, Konarzewska H, Renlund D.G, Karwande S.V, Barry W.H. Method for isolation of human ventricular myocytes from single endocardial and epicardial biopsies. Am J. Physio1.1995;268:H1757–64.

    Google Scholar 

  12. Rudnicki, M.A, McBurney M.W. Teratocarcinomas and embryonic stem cells, a practical approach (ed. E.J. Robertson). pp 19–49. Oxford: IRL Press 1987.

    Google Scholar 

  13. Lanson Jr N.A, Glembotski C.C, Steinhelper M.E, Field L.J, Claycomb W.C. Gene expression and atrial natriuretic factor processing and secretion in cultured AT-1 cardiac myocytes. Circulation 1992;85:1835–41.

    Article  PubMed  CAS  Google Scholar 

  14. Meyer N, Jaconi M, Landopoulou A, Fort P, Puceat M. A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells.FEBS Lett.2000; 478:151–8.

    Article  PubMed  CAS  Google Scholar 

  15. Lees-Miller J.P, Kondo C, Wang L, Duff H.J. Electrophysiological characterization of an alternatively processed ERG K* channel in mouse and human hearts. Circ. Res. 1997;81:719–26.

    Article  PubMed  CAS  Google Scholar 

  16. Vandorpe D.H, Shmukler B.E, Jiang L, Lim B, Maylie J, Adelman J.P, De Franceschi L, Domenica Cappelline M, Brugnara C, Alper S.L. cDNA cloning and functional characterization of the mouse Cat’-gated K’ channel, mIK1. J. Biol. Chem. 1998;273:21542–53.

    Article  CAS  Google Scholar 

  17. Davies M.P, An R.H, Doevendans P, Kubalak S, Chien K.R, Kass R.S. Developmental changes in ionic channel activity in the embryonic murine heart. Circ. Res. 1996;78:15–25.

    CAS  Google Scholar 

  18. Yasui K, Liu W, Opthof T, Kada K, Lee J-K, Kamiya K, Kodama I, If current and spontaneous activity in mouse embryonic ventricular myocytes. Circ. Res. 2001;88:536–42.

    Article  PubMed  CAS  Google Scholar 

  19. An R.H, Davies M.P, Doevendans P.A, Kubalak S.W, Bangalore R, Chien K.R. Kass R.S. Developmental changes in beta-adrenergic modulation of L-type Ca2+ channels in embryonic mouse heart. Circ.Res.1996;78:371–378.

    Article  PubMed  CAS  Google Scholar 

  20. Wobus A.M, Kleppisch T, Maltsev V, Hescheler J, Cardiomyocyte-like cells differentiated in vitro from embryonic carcinoma cells P19 are characterized by functional expression of adrenoceptor and Ca2+channels. In Vitro Cell. Dev. Biol. 1994;30A, 425–34.

    CAS  Google Scholar 

  21. Doevendans P.A, Daemen M, de Muinck E, Smits J. Cardiovascular phenotyping in mice. Cardiovasc. Res 1998;39:34–49.

    CAS  Google Scholar 

  22. Doevendans P.A, Kubalak S.W, An R.H, Becker D.K, Chien K.R, Kass R.S. Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes. J Mol Cell Cardiol 2000;32:839–851

    Article  PubMed  CAS  Google Scholar 

  23. Palmen M, Daemen M, Bronsaer R, Smits J, Doevendans P.A. Cardiac remodeling but not cardiac function is impaired in IGF-1 deficient mice after chronic myocardial infarction. Cardiovasc Res 2001;50:516–24.

    Article  PubMed  CAS  Google Scholar 

  24. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J.Clin.lnvest. 2001;108: 407–14.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mummery, C. et al. (2002). Towards Human Embryonic Stem Cell Derived Cardiomyocytes. In: Doevendans, P.A., Kääb, S. (eds) Cardiovascular Genomics: New Pathophysiological Concepts. Developments in Cardiovascular Medicine, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1005-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1005-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5347-8

  • Online ISBN: 978-1-4615-1005-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics