Skip to main content

Molecular Mechanisms of Remodeling in Human Atrial Fibrillation

  • Chapter
Cardiovascular Genomics: New Pathophysiological Concepts

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 242))

  • 62 Accesses

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Most frequently, AF occurs in conjunction with other cardiovascular disease, such as hypertension, ischemic heart disease, valve disease or cardiac failure. However, in 20-50% of the patients AF is not associated with any underlying disease [1]. One of the most intriguing properties of AF is its tendency to become more persistent over time [2]. Consequently, a large percentage of patients with paroxysmal AF will develop persistent AF [2]. Also, conversion to and maintenance of sinus rhythm by pharmacological or electrical methods becomes increasingly difficult the longer the arrhythmia exists[3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murgatroyd FD and Camm AJ. Atrial arrhythmias. The Lancet 1993;341:1371–22.

    Article  Google Scholar 

  2. Godtfredsen J. Etiology, course and prognosis. A follow-up study of 1212 cases. Copenhagen: University of Copenhagen. Thesis 1975.

    Google Scholar 

  3. Van Gelder IC, Crijns HJGM, Tieleman RG, De Kam PJ, Gosseling ATM, Verheugt FWA, and Lie KI. Value and limitation of electrical cardioversion in patients with chronic atrial fibrillation - importance of arrhythmia risk factors and oral anticoagulation. Arch Intern Med 1996;156:2585–92.

    Article  PubMed  Google Scholar 

  4. Wijffels MC, Kirchhof CJ, Dorland R, and Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995;92:1954–68.

    Article  PubMed  CAS  Google Scholar 

  5. Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Tieleman RG, Wietses M, Grandjean JG, Van Gilst WH, and Crijns HJGM. Ion channel remodeling is related to intraoperative atrial refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 2001;103:684–90.

    Article  PubMed  CAS  Google Scholar 

  6. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, and Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997;96:3157–63.

    Article  PubMed  CAS  Google Scholar 

  7. Thijssen VLJL, Ausma J, Liu GS, Allessie M, Eys GJJM, and Borgers M. Structural changes of atrial myocardium during chronic atrial fibrillation. Cardiovasc Pathol 2000;9:17–28.

    Article  PubMed  CAS  Google Scholar 

  8. Moe GK and Abildskov JA. Experimental and laboratory reports. Atrial fibrillation as a self-sustained arrhythmia independent of focal discharge. Am Heart J 1959;58:59–70.

    Article  PubMed  CAS  Google Scholar 

  9. Boyett MR and Jewell BR. Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart. Prog Biophys Molec Biol 1980;36:903–23.

    Google Scholar 

  10. Yue L, Feng J, Gaspo R, Li GR, Wang Z, and Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997;81:512–25.

    Article  PubMed  CAS  Google Scholar 

  11. Daoud EG, Knight BP, Weiss R, Bahu M, Paladino W, Goyal R, Man KC, Strickberger SA, and Morady F. Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling in humans. Circulation 1997;96:1542–50.

    Article  PubMed  CAS  Google Scholar 

  12. Yu WC, Chen SA, Lee SH, Tai CT, Feng AN, Kuo BIT, Ding YA, and Chang MS. Tachycardia-induced change of atrial refractory period in humans. Rate dependency and effects of antiarrhythmic drugs. Circulation 1998;97:2331–7.

    Article  PubMed  CAS  Google Scholar 

  13. Elvan A, Wylie K, and Zipes DP. Pacing-induced chronic atrial fibrillation impaires sinus node function in dogs: electrophysiological remodeling. Circulation 1996;94:2953–60.

    Article  PubMed  CAS  Google Scholar 

  14. Gaspo R, Bosch RF, Talajic M, and Nattel S. Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation 1997;96:4027–35.

    Article  PubMed  CAS  Google Scholar 

  15. Nattel S. Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc Res 1999;42:298–308.

    Article  PubMed  CAS  Google Scholar 

  16. Yue L, Melnyk P, Gaspo, Wang Z, and Nattel S. Molecular mehanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 1999;84:776–84.

    Article  PubMed  CAS  Google Scholar 

  17. Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Tieleman RG, Wietses M, Grandjean JG, Wilde AAM, Van Gilst WH, and Crijns HJGM. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation. J Am Coll Cardiol 2001;37:926–32.

    Article  PubMed  CAS  Google Scholar 

  18. Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, and Nerbonne JM. Outward K+current densities and Kv 1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 1997;80:1–10.

    Article  Google Scholar 

  19. Bosch RF, Zeng X., Grammer JB, Popovic K, Lewis C, and Kühlkamp V. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 1999;44:121–31.

    Article  PubMed  CAS  Google Scholar 

  20. Gaspo R, Sun H, Fareh S, Levi M, Yue L, Allen BG, Hebert TE, and Nattel S. Dihydropyridine and beta adrenergic receptor binding in dogs with tachycardia-induced atrial fibrillation. Cardiovasc Res 1999;42:434–42.

    Article  PubMed  CAS  Google Scholar 

  21. Gaspo R, Bosch RF, Bou-Abboud E, and Nattel S. Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 1997;81:1045–52.

    Article  PubMed  CAS  Google Scholar 

  22. Tieleman RG, De Langen CDJ, Van Gelder IC, De Kam PJ, Grandjean JG, Bel KJ, Wijffels MC, Allessie MA, and Crijns HJGM. Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation 1997;95:1945–53.

    Article  PubMed  CAS  Google Scholar 

  23. Leistad E, Aksnes G, Verburg E, and Christensen G. Atrial contractile dysfunction after short-term atrial fibrillation is reduced by verapamil but increased by BAY K8644. Circulation 1996;93:1747–54.

    Article  PubMed  CAS  Google Scholar 

  24. Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tieleman RG, Grandjean JG, Van Gilst WH, and Crijns HJGM. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res 1999;42:443–54.

    Article  PubMed  CAS  Google Scholar 

  25. Van Gelder IC, Brundel BJJM, Henning RH, Tuinenburg AE, Tieleman RG, Deelman LE, Grandjean JG, De Kam PJ, Van Gilst WH, and Crijns HJGM. Alterations in gene expression of proteins involved in the calcium handling in patients with atrial fibrillation. J Cardiovasc Electrophysiol 1999;10:552–60.

    Article  PubMed  Google Scholar 

  26. Lai LP, Su MJ, Lin J, Tsai CH, Chen YS, Huang SK, Tseng YZ, and Lien WP. Down-regulation of L-type calcium channel and sarcoplasmic reticular Cat+-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol 1999;33:1231–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ohkusa T, Ueyama T, Yamada J, Yano, Fujumura Y, Esato K, and Matsuzaki M. Alterations in cardiac sarcoplasmic reticulum Caz+regulatory proteins in the atrial tissue of patients with chronic atrial fibrillation. J Am Coll Cardiol 1999;34:255–63.

    Article  PubMed  CAS  Google Scholar 

  28. Morillo CA, Klein GJ, Jones D, and Guiraudom CM. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 1995;91:1588–95.

    Article  PubMed  CAS  Google Scholar 

  29. Franz MR, Karasik PL, Li C, Moubarak J, and Chavez M. Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter. J Am Coll Cardiol 1997;30:1785–92.

    Article  PubMed  CAS  Google Scholar 

  30. Van der Velden HMW, Ausma J, Rook MB, Hellemons AJ, Van Veen TA, Allessie M, and Jongsma HJ. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 2000;46:476–86.

    Article  PubMed  Google Scholar 

  31. Van der Velden HMW, Van Kempen MJA, Wijffels MCEF, Van Zijverden M, Groenewegen AW, Allessie MA, and Jongsma HJ. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J Cardiovasc Electrophysiol 1998;9:596–607.

    Article  PubMed  Google Scholar 

  32. Britz-Cunningham SH, Shah MM, Zuppan CW, and Fletcher W. Mutations of the connexin43 gap junction gne in patients with heart malformations and defects of laterality. N Engl J Med 1995;332:1323–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ausma J, Dispersyn GD, Duimel H, Thone F, Ver Donck L, Allessie M, and Borgers M. Changes in ultrastructural calcium distribution in goat atria during atrial fibrillation. J Mol Cell Cardiology 2000;32:355–64.

    Article  CAS  Google Scholar 

  34. Goette A., Arndt M, Röcken C, Spiess A, Staack T, Geller C, Huth C, Ansorge S, Klein H, and Lendeckel U. Regulation of angiotensin 1I receptor subtypes during atrial fibrillation in humans. Circulation 2000;101:2678–781.

    Article  PubMed  CAS  Google Scholar 

  35. Brundel BJJM, Van Gelder IC, Tuinenburg AE, Wietses M, Van Veldhuisen DJ, Van Gilst WH, Crijns HJGM, and Henning RH. Endothelin system in human persistent and paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 2000;12:737–42.

    Article  Google Scholar 

  36. Brundel BJJM. Molecular adaptations in human atrial fibrillation: mechanisms of protein remodeling. Thesis University Groningen, The Netherlands 2000.

    Google Scholar 

  37. Atsma DE, Bastiaanse EM, Jerzewski A, Van Der Valk LJ, and Van Der Laarse A. Role of calcium-activated neutral protease (calpain) in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition. Circ Res 1995;76:1071–8.

    Article  PubMed  CAS  Google Scholar 

  38. Gorza L, Menabo R, Vitadello M, Bergamini CM, and Di Lisa F. Cardiomyocyte troponin T immunoreactivity is modified by cross-linking resulting from intracellular calcium overload. Circulation 1996;93:1896–904.

    Article  PubMed  CAS  Google Scholar 

  39. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, and Marban E. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 1997;80:393–9.

    PubMed  CAS  Google Scholar 

  40. Sun H, Chartier D, Leblanc N, and Nattel S. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc Res 2001;49:751–61.

    Article  PubMed  CAS  Google Scholar 

  41. Matsumura Y, Saeki E, Otsu K, Morita T, Takeda H, Kuzuya T, Hori M, and Kusuoka H. Intracellular calcium level required for calpain activation in a single myocardial cell. J Mol Cell Cardiol 2001;33:1133–42.

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki K, [majoh S, Emori Y, Kawasaki, Minami Y, and Ohno S. Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Letters 1987;220:271–7.

    Article  PubMed  CAS  Google Scholar 

  43. Hao LY, Kameyama A, Kuroki S, Takano J, Takano E, Maki M, and Kameyama M. Calpastatin domain L is involved in the regulation of L-type Cat+channels in guinea pig cardiac myocytes. Biochem Biophys Res Commun 2000;279:756–61.

    Article  PubMed  CAS  Google Scholar 

  44. De Jongh KS, Colvin AA, Wang KK, and Catterall WA. Differential proteolysis of the full-length form of the L-type calcium channel alpha 1 subunit by calpain. J Neurochem 1994;63:1558–64.

    Article  PubMed  Google Scholar 

  45. Belles B, Hescheler J, Trautwein W, Blomgren K, and Karlsson JO. A possible physiological role of the Ca-dependent protease calpain and its inhibitor calpastatin on the Ca current in guinea pig myocytes. Pflugers Arch 1998;412:554–6.

    Article  Google Scholar 

  46. Papp Z, Van Der Velden J, and Stienen G. Calpain-I induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of rat heart. Cardiovasc Res 2000;45:981–93.

    Article  PubMed  CAS  Google Scholar 

  47. Laflamme MA and Becker PL. G(s) and adenylylcyclase in transverse tubules of heart: implications for cAMP-dependent signaling. Am.J.Physio1.1999;277:H1841–8.

    CAS  Google Scholar 

  48. Lane RD, Allan DM, and Mellgren R. A comparison of the intracellular distribution of mucalpain, m-calpein and calpastatin in proliferating human A431 cells. Exp Cell Res 1992;203:5–16.

    Article  PubMed  CAS  Google Scholar 

  49. Aime-Sempe C, Folliguet T, Rucker-Martin, Krajewska M, Krajewska S, Heimburger M, Aubier M, Mercardier JJ, Reed JC, and Hatem SN. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol 1999;34:1577–86.

    Article  PubMed  CAS  Google Scholar 

  50. Majno G and Joris I. Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 1995;146:3–15.

    PubMed  CAS  Google Scholar 

  51. Laing JG, Tadros PN, Saffitz J, and Beyer EC. Proteolysis of connexin43-containing gap junctions in normal and heat-stressed cardiac myocytes. Cardiovasc Res 1998;38:711–8.

    Article  PubMed  CAS  Google Scholar 

  52. Manning WJ, Leeman DE, Gotch P, and Come PC. Pulsed evaluation of atrial mechanical function after electrical cardioversion of atrial fibrillation. J Am Coll Cardiol 1989;13:61723.

    Article  Google Scholar 

  53. Manning WJ, Silverman DI, Katz SE, Riley MF, Come PC, Doherty RM, Munson JT, and Douglas PS. Impaired left atrial mechanical function after cardioversion: relation to the duration of atrial fibrillation. J Am Coll Cardiol 1994;23:1535–40.

    Article  PubMed  CAS  Google Scholar 

  54. Daoud EG, Marcovitz P, Knight B, Goyal R, Ching Man K, Strickberger A, Armstrong WF, and Morady F. Short-term effect of atrial fibrillation on atrial contractile function in humans. Circulation 1999;99:3024–7.

    Article  PubMed  CAS  Google Scholar 

  55. Tieleman RG, Van Gelder IC, Crijns HJ, De Kam PJ, Van Den Berg MP, Haaksma J, Van Der Woude HJ, and Allessie MA. Early recurrences of atrial fibrillation after electrical cardioversion: A result of fibrillation induced electrical remodeling of the atria? J Am Coll Cardiol 1998;31:167–73.

    Article  PubMed  CAS  Google Scholar 

  56. Goette A., Honeycutt C, and Langberg H. Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation 1996;94:2968–74.

    Article  PubMed  CAS  Google Scholar 

  57. Nattel S, Li D, and Yue L. Basic mechanisms of atrial fibrillation, very new insights into very old ideas. Annu rev Physiol 2000;62:51–77.

    Article  PubMed  CAS  Google Scholar 

  58. Fareh S, Bénardeau A, Thibault, and Nattel S. The T-type Ca“ channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation 1999;100:2191–7.

    Article  PubMed  CAS  Google Scholar 

  59. Jayachandran JV, Winkle W, Sib HJ, Zipes DP, and Olgin JE. Chronic atrial fibrillation from rapid atrial pacing is associated with reduced atrial blood flow: a positron emission tomography study. Circulation 1998;98: 1–209.

    Article  Google Scholar 

  60. Jayachandran JV, Zipes DP, Weksler J, and Olgin JE. Role of the Na.’/H+exchanger in short-term atrial electrophysiological remodeling. Circulation 2000;101:1861–6.

    Article  PubMed  CAS  Google Scholar 

  61. Altemose GT, Zipes DP, Weksler J, Miller JM, and Olgin JE. Inhibition of the Na(+)/H(+) exchanger delays the development of rapid pacing-induced atrial contractile dysfunction. Circulation 2001;103:762–8.

    Article  PubMed  CAS  Google Scholar 

  62. Levi AJ, Dalton GR, Hancox JC, Mitcheson JS, Issberner J, Bates JA, Evans SJ, Howarth FC, Hobai IA, and Jones JV. Role of intracellular sodium overload in the genesis of cardiac arrhythmias. J Cardiovasc Electrophysiol 1997;8:700–21.

    Article  PubMed  CAS  Google Scholar 

  63. Gorza L, Menabo R, Di Lisa F, and Vitadello M. Troponin T cross-linking in human apoptotic cardiomyocytes. Am J Pathol 1997;150:2087–97.

    PubMed  CAS  Google Scholar 

  64. Van Gelder IC, Crijns HJGM, Van Gilst WH, Verwer R, and Lie KI. Prediction of uneventful cardioversion and maintenance of sinus rhythm from direct-current electrical cardioversion of chronic atrial fibrillation and flutter. Am.J.Cardiol. 1991;86:41–6.

    Article  Google Scholar 

  65. Stracher A. Calpain inhibitors as therapeutic agents in nerve and muscle degeneration. Ann N Y Acad Sci 1999;28:52–9.

    Article  Google Scholar 

  66. Ausma J, Duimel H, Borgers M, and Allessie M. Recovery of structural remodeling after cardioversion of chronic atrial fibrillation. Circulation 2000;102:II-153.

    Google Scholar 

  67. Hobbs WJC, Fynn S, Todd D, Wolfson P, Galloway M, and Garrett CJ. Reversal of atrial electrical remodeling after cardioversion of persistent AF in humans. Circulation 2000;101:1145–51.

    Article  PubMed  CAS  Google Scholar 

  68. Pandozi C, Bianconi L, Villani M, Gentilucci G, Castro A, Altaraura G, Jesi AP, Lamberti F, Ammirati F, and Santini M. Electrophysiological characteristics of the human atria after cardioversion of persistent atrial fibrillation. Circulation 1998;98:2860–5.

    Article  PubMed  CAS  Google Scholar 

  69. Lendeckel U, Arndt M, Wrenger S, Neppie K, Huth C, Ansorge S, Klein HU, Goette A. Expression and activity of ectopeptidases in fibrillating human atria. J Mol Cell Cardiol. 2001;33:1273–81.

    Article  PubMed  CAS  Google Scholar 

  70. Goette A., Staack T, Röcken C, Arndt M, Geller JC, Huth C, Ansorge S, Klein HU, and Lendeckel U. Increased expression of extracellular signal-regulated kinase and angiotensinconverting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 2000;35:1669–77.

    Article  PubMed  CAS  Google Scholar 

  71. Beere HM and Green DR. Stress management - heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 2001;11:6–10.

    Article  PubMed  CAS  Google Scholar 

  72. Wolf BB, Goldstein JC, Stennicke HR, Beere HM, Amarante-Mendes GP, Salvesen GS, and Green DR. Calpain functions in a caspase independent manner to promote apoptosislike events during platelet activation. Blood 1999;94:1683–92.

    PubMed  CAS  Google Scholar 

  73. Leist M and Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001;2:589–98.

    Article  PubMed  CAS  Google Scholar 

  74. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, and Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000;405:360–4.

    Article  PubMed  CAS  Google Scholar 

  75. Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, and Nerbonne JM Atrial L-Type Cat+Currents and Human Atrial Fibrillation. Circ Res 1999;85:428

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brundel, B.J.J.M., Henning, R.H., Kampinga, H.H., Van Gelder, I.C., Crijns, H.J.G.M. (2002). Molecular Mechanisms of Remodeling in Human Atrial Fibrillation. In: Doevendans, P.A., Kääb, S. (eds) Cardiovascular Genomics: New Pathophysiological Concepts. Developments in Cardiovascular Medicine, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1005-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1005-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5347-8

  • Online ISBN: 978-1-4615-1005-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics