Skip to main content

Cardiac Hypertrophic Signaling the Good, the Bad and the Ugly

  • Chapter
Cardiovascular Genomics: New Pathophysiological Concepts

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 242))

  • 64 Accesses

Abstract

All cells in multi-cellular organisms must be able to sense their surrounding environment and and respond based upon this information. In a similar fashion, cardiac muscle cells are equipped with a specialized protein machinery composed of detection systems (receptors), intermediate proteins within the cell for information transduction (intracellular signal transducers) and nuclear components specialized in changing the genetic profile of the cell (transcription factors). This integrated system is the subject of part of the biological sciences that studies “signal transduction” or shortly “signaling”, and topics the molecular mechanisms by which transfer of biological - information at the cellular level is converted. Cardiac signaling systems provide crucial information for cells to decide about differentiation status, death or metabolic control. As such, it is not surprising that many signaling malfunctions underly human diseases. For example, cancer evolves following inactivating mutations in growth-inhibitory pathways, resulting in specialized cells with proliferative advantages over its neighbouring cells[1]. Diabetes results from defects in the insulin-signaling pathway used to control blood glucose levels[2]. Certain forms of achrondoplasia (dwarfism) result from mutations in the receptor tyrosine kinase for fibroblast growth factor, [3] while in agammaglobulinaemia (failure to produce immunoglobulins in the blood), a mutation in the B-cell tyrosine kinase Btk results in a failure of this enzyme to respond to activation of the enzyme phosphatidylinositol-3-OH kinase (PI-3K) [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Withers DJ, White M. Perspective: The insulin signaling system--a common link in the pathogenesis of type 2 diabetes. Endocrinology. 2000;141:1917–21.

    Article  PubMed  CAS  Google Scholar 

  3. Bellus GA, McIntosh I, Smith EA, Aylsworth AS, Kaitila I, Horton WA, Greenhaw GA, Hecht JT, Francomano CA. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet. 1995;10:357–9.

    Article  PubMed  CAS  Google Scholar 

  4. Saffran DC, Parolini O, Fitch-Hilgenberg ME, Rawlings DJ, Afar DE, Witte ON, Conley ME. Brief report: a point mutation in the SH2 domain of Bruton’s tyrosine kinase in atypical X-linked agammaglobulinemia. N Engl J Med. 1994;330:1488–91.

    Article  PubMed  CAS  Google Scholar 

  5. Mauro MJ, Druker BJ. STI571: a gene product-targeted therapy for leukemia. Cuff Oncol Rep. 2001;3:223–7.

    Article  CAS  Google Scholar 

  6. Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S, Leopold WR, Saltiel AR. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810–6.

    Article  PubMed  CAS  Google Scholar 

  7. Lefkowitz Ri, Rockman HA, Koch WJ. Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation. 2000;101:1634–7.

    Article  Google Scholar 

  8. Gaudin C, Ishikawa Y, Wight DC, Mandavi V, Nadal-Ginard B, Wagner TE, Vatner DE, Homey O. Overexpression of Gs alpha protein in the hearts of transgenic mice. J Clin Invest. 1995;95:1676–83.

    Article  PubMed  CAS  Google Scholar 

  9. Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD, Mitarai S, Yatani A, Dorn GW, 2nd. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation. 2000;101:1707–14.

    Article  PubMed  CAS  Google Scholar 

  10. Dorn GW, 2nd, Tepe NM, Wu G, Yatani A, Liggett SB. Mechanisms of impaired betaadrenergic receptor signaling in G(alphaq)- mediated cardiac hypertrophy and ventricular dysfunction. Mol Pharmacol. 2000;57:278–87.

    PubMed  CAS  Google Scholar 

  11. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in betal -adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A. 1999;96:7059–64:

    Google Scholar 

  12. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW, 2nd. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A. 1998;95:10140–5.

    Article  PubMed  CAS  Google Scholar 

  13. Neumann J, Schmitz W, Scholz H, von Meyerinck L, Doring V, Kalmar P. Increase in myocardial Gi-proteins in heart failure. Lancet. 1988;2:936–7.

    Article  PubMed  CAS  Google Scholar 

  14. Redfern CH, Degtyarev MY, Kwa AT, Salomonis N, Cotte N, Nanevicz T, Fidelman N, Desai K, Vranizan K, Lee EK, Coward P, Shah N, Warrington JA, Fishman GI, Bernstein D, Baker AJ, Conklin BR. Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc Natl Acad Sci U S A. 2000;97:4826–31.

    Article  PubMed  CAS  Google Scholar 

  15. Clerk A, Sugden PH. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res. 2000;86:1019–23.

    Article  PubMed  CAS  Google Scholar 

  16. Hunter JJ, Tanaka N, Rockman HA, Ross J, Jr., Chien KR. Ventricular expression of a MLC-2vras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem. 1995;270:23173–8.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, Hunter JJ, Chien KR, Ross J, Jr. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation. 1996;94:1109–17.

    Article  PubMed  CAS  Google Scholar 

  18. Gottshall KR, Hunter JJ, Tanaka N, Dalton N, Becker KD, Ross J, Jr., Chien KR. Ras-dependent pathways induce obstructive hypertrophy in echo-selected transgenic mice. Proc Natl Acad Sci U S A. 1997;94:4710–5.

    Article  PubMed  CAS  Google Scholar 

  19. Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev. 2001;15:535–53.

    Article  PubMed  CAS  Google Scholar 

  20. Sah VP, Minarnisawa S, Tam SP, Wu TH, Dorn GW, 2nd, Ross J, Jr., Chien KR, Brown JH. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest. 1999;103:1627–34.

    Article  PubMed  CAS  Google Scholar 

  21. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active racl.J Clin Invest.2000;105:875–86.

    Article  PubMed  CAS  Google Scholar 

  22. Sugden PH, Clerk A. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998;83:34552.

    Article  Google Scholar 

  23. Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal. 1997;9:337–51.

    Article  PubMed  CAS  Google Scholar 

  24. Haneda M, Sugimoto T, Kikkawa R. Mitogen-activated protein kinase phosphatase: a negative regulator of the mitogen-activated protein kinase cascade. Eur J Pharmacol. 1999;365:1–7.

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Huang S, Sah VP, Ross J, Jr., Brown JH, Han J, Chien KR. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998;273:2161–8.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR. Cardiac hypertrophy induced by mitogenactivated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem. 1998;273:5423–6.

    Article  PubMed  CAS  Google Scholar 

  27. Bueno OF, De Windt LJ, Tmitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD. The MEKI-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. Embo J. 2000;19:6341–50.

    Article  PubMed  CAS  Google Scholar 

  28. Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB, Colucci WS. MEK1/2-ERK1/2 mediates alphal-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. 1 Mol Cell Cardiol. 2001;33:779–87.

    Article  CAS  Google Scholar 

  29. Bueno OF, De Windt LI, Lim HW, Tymitz KM, Witt SA, Kimball TR, Molkentin JD. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophie response in vitro and in vivo. Circ Res. 2001;88:88–96.

    Article  PubMed  CAS  Google Scholar 

  30. Esposito G, Prasad SV, Rapacciuolo A, Mao L, Koch WJ, Rockman HA. Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation. 2001;103:1453–8.

    Article  PubMed  CAS  Google Scholar 

  31. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation. 2001;103:670–7.

    Article  PubMed  CAS  Google Scholar 

  32. Cook SA, Sugden PH, Clerk A. Activation of c-Jun N-terminal kinases and p38-mitogenactivated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol. 1999;31:1429–34.

    Article  PubMed  CAS  Google Scholar 

  33. Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999;96:611–4.

    Article  PubMed  CAS  Google Scholar 

  34. Crabtree GR. Calcium, calcineurin, and the control of transcription. J Biol Chem. 2001;276:2313–6.

    Article  PubMed  CAS  Google Scholar 

  35. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.

    Article  PubMed  CAS  Google Scholar 

  36. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science. 1998;281:1690–3.

    Article  PubMed  CAS  Google Scholar 

  37. Molkentin JD. Calcineurin and beyond: cardiac hypertrophie signaling. Cire Res. 2000;87:7318.

    Article  Google Scholar 

  38. De Windt LJ, Lim HW, Bueno OF, Liang Q, Delling U, Braz JC, Glascock BJ, Kimball TF, delCardiac hypertrophic signalingI55 Monte F, Hajjar RJ, Molkentin JD. Targeted inhibition of calcineurin attenuates cardiac hypertrophy invivo. Proc Natl Acad Sci U S A. 2001;98:3322–3327.

    Article  PubMed  CAS  Google Scholar 

  39. Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J, Antos CL, Shelton JM, Bassel-Duby R, Olson EN, Williams RS. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2001;98:3328–33.

    Article  PubMed  CAS  Google Scholar 

  40. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000;105:1395–406.

    Article  PubMed  CAS  Google Scholar 

  41. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14–3–3 to histone deacetylase 5. Proc Natl Acad Sci U S A. 2000;97:14400–5.

    Article  PubMed  CAS  Google Scholar 

  42. McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class ii histone deacetylases. Mol Cell Biol. 2001;21:6312–21.

    Article  PubMed  CAS  Google Scholar 

  43. Lu J, McKinsey TA, Nicol RL, Olson EN. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A. 2000;97:4070–5.

    Article  PubMed  CAS  Google Scholar 

  44. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408:106–11.

    Article  PubMed  CAS  Google Scholar 

  45. Aoki H, Sadoshima J, Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med. 2000;6:183–8.

    Article  PubMed  CAS  Google Scholar 

  46. Mochly-Rosen D, Gordon AS. Anchoring proteins for protein kinase C: a means for isozyme selectivity. Faseb J. 1998;12:35–42.

    PubMed  CAS  Google Scholar 

  47. Molkentin JD, Dorn IG, 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391–426.

    Article  PubMed  CAS  Google Scholar 

  48. Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman GI, Buttrick PM. Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest. 1997;100:2189–95.

    Article  PubMed  CAS  Google Scholar 

  49. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A. 1997;94:9320–5.

    Article  PubMed  CAS  Google Scholar 

  50. Roman BB, Geenen DL, Leitges M, Buttrick PM. PKC-beta is not necessary for cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2001;280:H2264–70.

    PubMed  CAS  Google Scholar 

  51. De Windt LJ, Lim HW, Haq S, Force T, Molkentin JD. Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem. 2000;275:13571–9.

    Article  PubMed  CAS  Google Scholar 

  52. Wu G, Toyokawa T, Hahn H, Dorn GW, 2nd. Epsilon protein kinase C in pathological myocardial hypertrophy. Analysis by combined transgenic expression of translocation modifiers and Galphaq. J Biol Chem. 2000;275:29927–30.

    Article  PubMed  CAS  Google Scholar 

  53. Muth JN, Bodi I, Lewis W, Varadi G, Schwartz A. A Ca(2+)-dependent transgenic model of cardiac hypertrophy: A role for protein kinase Calpha. Circulation. 2001;103:140–7.

    CAS  Google Scholar 

  54. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA. Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res. 2000;86:1218–23.

    Article  PubMed  CAS  Google Scholar 

  55. Pass JM, Zheng Y, Wead WB, Zhang J, Li RC, Bolli R, Ping P. PKCepsilon activation induces dichotomous cardiac phenotypes and modulates PKCepsilon-RACK interactions and RACK expression. Am J Physiol Heart Circ Physiol. 2001;280:H946–55.

    PubMed  CAS  Google Scholar 

  56. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J, Jr., Muller W, Chien KR. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999;97:189–98. 156O.F.Bueno et al.

    Article  PubMed  CAS  Google Scholar 

  57. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. Embo J. 2000;19:2537–48.

    Article  PubMed  CAS  Google Scholar 

  58. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest. 1997;100:1991–9.

    Article  PubMed  CAS  Google Scholar 

  59. Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. Embo J. 2001;20:2757–67.

    Article  PubMed  CAS  Google Scholar 

  60. Huang WY, Aramburu J, Douglas PS, Izumo S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med. 2000;6:482–3.

    Article  PubMed  CAS  Google Scholar 

  61. Gaussin V, Schneider MD. Surviving infarction one gene at a time: decreased remodeling and mortality in engineered mice lacking the angiotensin II type 1 receptor. Circulation. 1999;100:2043–4.

    Article  PubMed  CAS  Google Scholar 

  62. Aronow BJ, Toyokawa T, Canning A, Haghighi K, Delling U, Kranias E, Molkentin JD, Dorn GW, 2nd. Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiol Genomics. 2001;6:19–28.

    PubMed  CAS  Google Scholar 

  63. Naya FS, Olson E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol. 1999;11:683–8.

    Article  PubMed  CAS  Google Scholar 

  64. Youn HD, Chatila TA, Liu JO. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. Embo J. 2000;19:4323–31.

    Article  PubMed  CAS  Google Scholar 

  65. Takano H. Komuro I, Oka T, Shiojima 1, Hiroi Y, Mizuno T, Yazaki Y. The Rho family G proteins play a critical role in muscle differentiation. Mol Cell Biol. 1998;18:1580–9.

    PubMed  CAS  Google Scholar 

  66. Quinn ZA, Yang CC, Wrana JL, McDermott JC. Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins. Nucleic Acids Res. 2001;29:732–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bueno, O.F., van Rooij, E., Lips, D.J., Doevendans, P.A., De Windt, L.J. (2002). Cardiac Hypertrophic Signaling the Good, the Bad and the Ugly. In: Doevendans, P.A., Kääb, S. (eds) Cardiovascular Genomics: New Pathophysiological Concepts. Developments in Cardiovascular Medicine, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1005-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1005-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5347-8

  • Online ISBN: 978-1-4615-1005-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics