Skip to main content

Nasal Delivery of Biopharmaceuticals

  • Chapter
  • First Online:
Mucosal Delivery of Biopharmaceuticals

Abstract

Intranasal delivery of biopharmaceuticals is an attractive option because it has many advantages such as ease of administration, noninvasive needle-free administration, rapid onset of action, and the avoidance of gastrointestinal and hepatic first-pass effects. On the other hand, poor transport of biopharmaceuticals across the nasal mucosa limited the intranasal administration. Here, the biological and immunological aspects of nasal delivery are described. Based on these physiological and functional characteristics of the nasal cavity, factors related on nasal drug delivery such as blood flow, mucociliar clearance, enzymatic degradation, transporters, and efflux systems are reviewed. Finally, many drug formulations such as prodrugs, solubilization agents, enzyme inhibitors, absorption promoters, polymeric carriers, and lipid-based carriers to overcome the poor transportation and achieve efficient intranasal drug delivery are discussed. The proper formulation and carrier design can control the permeability and localization of drugs and lead to efficient intranasal drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pires A, Fortuna A, Alves G, Falcao A. Intranasal drug delivery: how, why and what for? J Pharm Sci. 2009;12:288–311.

    CAS  Google Scholar 

  2. Stanislas GD, Amparo B, Emmanuel N, Christophe F, Sabine BL, Louis-Jean C, Morgan LG, Marc F, Philippe D. Intranasal drug delivery: an efficient and non-invasive route for systemic administration focus on opioids. Pharmacol Ther. 2012;134:366–79.

    Google Scholar 

  3. Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Del Rev. 1998;29:3–12.

    Google Scholar 

  4. Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Del Rev. 2005;57:1640–65.

    CAS  Google Scholar 

  5. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Disc Today. 2002;7:967–75.

    CAS  Google Scholar 

  6. Busuttil A, More IA, McSeveney D. A reappraisal of the ultrastructure of the human respiratory nasal mucosa. J Anat. 1977;124:445–58.

    CAS  PubMed  Google Scholar 

  7. Dondeti P, Zia H, Needham TE. Bioadhesive and formulation parameters affecting nasal absorption. Int J Pharm. 1996;127:115–33.

    CAS  Google Scholar 

  8. Verdugo P. Goblet cells secretion and mucogenesis. Ann Rev Physiol. 1990;52:157–76.

    CAS  Google Scholar 

  9. Lethem MI. The role of tracheobronchial mucus in drug administration to the airways. Adv Drug Deliv. 1993;11:19–27.

    Google Scholar 

  10. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337:1–24.

    CAS  PubMed  Google Scholar 

  11. Lansley AB. Mucociliary clearance and drug delivery via the respiratory tract. Adv Drug Del Rev. 1993;11:299–327.

    CAS  Google Scholar 

  12. Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target. 1998;5:415–41.

    CAS  PubMed  Google Scholar 

  13. Dhanda DS, Frey WH, Leopold D, Kompella U. Nose to brain delivery: approaches for drug deposition in human olfactory epithelium. Drug Deliv Technol. 2005;5:1–9.

    Google Scholar 

  14. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56:3–17.

    CAS  PubMed  Google Scholar 

  15. Neutra MR. M cells in antigen sampling in mucosal tissues. Curr Top Microbiol Immunol. 1999;236:17–32.

    CAS  PubMed  Google Scholar 

  16. Debertin AS, Tschernig T, Tonjes H, Kleemann WJ, Troger HD, Pabst R. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin Exp Immunol. 2003;134:503–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Debertin AS, Tschernig T, Schurmann A, Bajanowski T, Brinkmann B, Pabst R. Coincidence of different structures of mucosa-associated lymphoid tissue (MALT) in the respiratory tract of children: no indications for enhanced mucosal immunostimulation in sudden infant death syndrome (SIDS). Clin Exp Immunol. 2006;146:54–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Goeringer GC, Vidic B. The embryogenesis and anatomy of Waldeyer’s ring. Otolaryngol Clin North Am. 1987;20:207–17.

    CAS  PubMed  Google Scholar 

  19. Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunol Rev. 2005;206:22–31.

    PubMed  Google Scholar 

  20. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6:148–58.

    CAS  PubMed  Google Scholar 

  21. Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. 2007;96:473–83.

    CAS  PubMed  Google Scholar 

  22. Iwasaki A. Mucosal dendritic cells. Ann Rev Immunol. 2007;25:381–418.

    CAS  Google Scholar 

  23. Storni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv Drug Del Rev. 2005;57:333–55.

    CAS  Google Scholar 

  24. Lamm ME. Interaction of antigens and antibodies at mucosal surfaces. Ann Rev Microbiol. 1997;51:311–40.

    CAS  Google Scholar 

  25. MacPherson GG, Liu LM. Dendritic cells and Langerhans cells in the uptake of mucosal antigens. Curr Top Microbiol Immunol. 1999;236:33–53.

    CAS  PubMed  Google Scholar 

  26. Kunkel EJ, Butcher EC. Plasma-cell homing. Nat Rev Immunol. 2003;3:822–9.

    CAS  PubMed  Google Scholar 

  27. Dae-Duk K. Drug absorption studies: in situ, in vitro and in silico models. Chapter 9. Springer: USA; 2007.

    Google Scholar 

  28. Graff CL, Pollack GM. P-glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res. 2003;20:1225–30.

    CAS  PubMed  Google Scholar 

  29. Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res. 2005;22:86–93.

    CAS  PubMed  Google Scholar 

  30. Westin U, Piras E, Jansson B, Bergström U, Dahlin M, Brittebo E, Björk E. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci. 2005;24:565–73.

    CAS  PubMed  Google Scholar 

  31. McMartin C. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci. 1987;76:535–40.

    CAS  PubMed  Google Scholar 

  32. Huang CH, Kimura R, Nassar RB, Hussain A. Mechanism of nasal absorption of drugs. I: physicochemical parameters influencing the rate of in situ nasal absorption of drugs in rats. J Pharm Sci. 1985;74:608–11.

    CAS  PubMed  Google Scholar 

  33. Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17:978–84.

    CAS  PubMed  Google Scholar 

  34. Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29:13–38.

    PubMed  Google Scholar 

  35. Schipper N, Verhoef J, Merkus FW. The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm Res. 1991;8:807–14.

    CAS  PubMed  Google Scholar 

  36. Illum L. Nasal drug delivery: possibilities, problems and solutions. J Control Release. 2003;87:187–98.

    CAS  PubMed  Google Scholar 

  37. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J. 1999;13:1177–88.

    CAS  PubMed  Google Scholar 

  38. Bogdanffy MS. Biotransformation enzymes in the rodent nasal mucosa: the value of a histochemical approach. Environ Health Perspect. 1990;85:177–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Dahl AR, Lewis JL. Respiratory tract uptake of inhalants and metabolism of xenobiotics. Ann Rev Pharmacol Toxicol. 1993;33:383–407.

    CAS  Google Scholar 

  40. Mitra AK, Krishnamoorthy R. Prodrugs for nasal drug delivery. Adv Drug Deliv Rev. 1998;29:135–46.

    PubMed  Google Scholar 

  41. Dimova S, Brewster ME, Noppe M, Jorissen M, Augustijns P. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro. 2005;19:107–22.

    CAS  PubMed  Google Scholar 

  42. Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res. 1992;9:1–9.

    CAS  PubMed  Google Scholar 

  43. Lee VH, Yamamoto A. Penetration and enzymatic barriers of peptide and protein absorption. Adv Drug Deliv Rev. 1990;4:171–207.

    CAS  Google Scholar 

  44. Harris AS. Intranasal administration of peptides: nasal deposition, biological response and absorption of desmopressin. J Pharm Sci. 1986;75:1085–8.

    CAS  PubMed  Google Scholar 

  45. Kandimalla KK, Donovan MD. Transport of hydroxyzine and triprolidine across bovine olfactory mucosa: role of passive diffusion in the direct nose-to-brain uptake of small molecules. Int J Pharm. 2005;302:133–44.

    CAS  PubMed  Google Scholar 

  46. Donovan M, Flynn G, Amidon G. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm Res. 1990;7:863–8.

    CAS  PubMed  Google Scholar 

  47. Fisher A, Illum L, Davis S, Schacht E. Diiodo-L-tyrosine labelled dextrans as molecular size markers of nasal absorption in the rat. J Pharm Pharmacol. 1992;44:550–4.

    CAS  PubMed  Google Scholar 

  48. Katdare A, Chaubal MV. Excipient development for pharmaceutical biotechnology and drug delivery systems. Taylor & Francis: USA; 2006.

    Google Scholar 

  49. Corbo DC. Characterization of the barrier properties of mucosal membranes. J Pharm Sci. 1990;79:202–6.

    CAS  PubMed  Google Scholar 

  50. Corbo DC. Drug absorption through mucosal membranes: effect of mucosal route and penetrant hydrophilicity. Pharm Res. 1989;6:848–52.

    CAS  PubMed  Google Scholar 

  51. Lipworth BJ, Jackson CM. Safety of inhaled and intranasal corticosteroids: lessons for the new millennium. Drug Saf. 2000;23:11–33.

    CAS  PubMed  Google Scholar 

  52. Washington N, Steele RJ, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm. 2000;198:139–46.

    CAS  PubMed  Google Scholar 

  53. Shao Z, Park GB, Krishnamoorthy R, Mitra AK. The physicochemical properties, plasma enzymatic hydrolysis, and nasal absorption of acyclovir and its 2, ester prodrugs. Pharm Res. 1994;11:237–42.

    CAS  PubMed  Google Scholar 

  54. Hirai S, Yashiki T, Matsuzawa T, Mima H. Absorption of drugs from the nasal mucosa of rats. Int J Pharm. 1981;7:317–25.

    CAS  Google Scholar 

  55. Zaki NM, Awad GA, Mortada ND, Abd ElHady SS. Rapid-onset intranasal delivery of metoclopramide hydrochloride. Part I. Influence of formulation variables on drug absorption in anesthetized rats. Int J Pharm. 2006;327:89–96.

    CAS  PubMed  Google Scholar 

  56. Yang C, Gao H, Mitra AK. Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of acyclovir. J Pharm Sci. 2001;90:617–24.

    CAS  PubMed  Google Scholar 

  57. Machida M. Effects of surfactants and protease inhibitors on nasal absorption of recombinant human granulocyte colonystimulating factor (rhG-CSF) in rats. Biol Pharm Bull. 1994;17:1375–8.

    CAS  PubMed  Google Scholar 

  58. Morimoto K, Miyazaki M, Kakemi M. Effects of proteolytic enzyme inhibitors on nasal absorption of salmon calcitonin in rats. Int J Pharm. 1995;113:1–8.

    CAS  Google Scholar 

  59. Bernkop-Schnurch A. Use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release. 1998;52:1–16.

    CAS  PubMed  Google Scholar 

  60. Romeo VD, Meireles J, Sileno AP, Pimplaskar HK, Behl CR. Effects of physicochemical properties and other factors on systemic nasal delivery. Adv Drug Deliv Rev. 1998;29:89–116.

    PubMed  Google Scholar 

  61. Hussain AA, Al-Bayatti AA, Dakkuri A, Okochi K, Hussain MA. Testosterone 17β-N, N-dimethylglycinate hydrochloride: a prodrug with a potential for nasal delivery of testosterone. J Pharm Sci. 2002;91:785–9.

    CAS  PubMed  Google Scholar 

  62. Heidari A, Sadrai H, Varshosaz J. Nasal delivery of insulin using bioadhesive chitosan gels. Drug Deliv. 2006;13:31–8.

    PubMed  Google Scholar 

  63. Alsarra IA, Hamed AY, Mahrous GM, El Maghraby GM, Al-Robayan AA, Alanazi FK. Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm. 2009;35:352–62.

    CAS  PubMed  Google Scholar 

  64. Kilian N, Müller DG. The effect of a viscosity and an absorption enhancer on the intra nasal absorption of metoprolol in rats. Int J Pharm. 1998;163:211–7.

    CAS  Google Scholar 

  65. Pujara CP, Shao Z, Duncan MR, Mitra AK. Effects of formulation variables on nasal epithelial cell integrity: biochemical evaluations. Int J Pharm. 1995;114:197–203.

    CAS  Google Scholar 

  66. Haschke M, Suter K, Hofmann S, Witschi R, Frohlich J, Imanidis G, et al. Pharmacokinetics and pharmacodynamics of nasally delivered midazolam. Br J Clin Pharmacol. 2010;69:607–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Cho HJ, Balakrishnan P, Shim WS, Chung SJ, Shim CK, Kim DD. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron-cyclodextrin complex and carboxymethylcellulose for intranasal delivery. Int J Pharm. 2010;400:59–65.

    CAS  PubMed  Google Scholar 

  68. Morimoto K, Yamaguchi H, Iwakura Y, Miyazaki M, Nakatani E, Iwamoto T, et al. Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue. Pharm Res. 1991;8:1175–9.

    CAS  PubMed  Google Scholar 

  69. Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet. 2008;23:87–94.

    CAS  PubMed  Google Scholar 

  70. Tachibana T, Kato M, Takano J, Sugiyama Y. Predicting drug-drug interactions involving the inhibition of intestinal CYP3A4 and P-glycoprotein. Curr Drug Metab. 2010;11:762–77.

    CAS  PubMed  Google Scholar 

  71. Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet. 2003;42:1107–28.

    CAS  PubMed  Google Scholar 

  72. Karasulu E, Yavasoglu A, Evrensanal Z, Uyanikgil Y, Karasulu HY. Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers. Drug Deliv. 2008;15:219–25.

    CAS  PubMed  Google Scholar 

  73. Sharma S, Mukkur TKS, Benson HAE, Chen Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci. 2009;98:812–43.

    CAS  PubMed  Google Scholar 

  74. Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm. 1999;178:55–65.

    CAS  PubMed  Google Scholar 

  75. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62:59–82.

    CAS  PubMed  Google Scholar 

  76. Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res. 1994;11:1186–9.

    CAS  PubMed  Google Scholar 

  77. Illum L, Watts P, Fisher AN, Hinchcliffe M, Norbury H, Jabbal-Gill I, et al. Intranasal delivery of morphine. J Pharmacol Exp Ther. 2002;301:391–400.

    CAS  PubMed  Google Scholar 

  78. Irie T, Wakamatsu K, Arima H, Aritomi H, Uekama K. Enhancing effects of cyclodextrins on nasal absorption of insulin in rats. Int J Pharm. 1992;84:129–39.

    CAS  Google Scholar 

  79. Shao Z, Krishnamoorthy R, Mitra AK. Cyclodextrins as nasal absorption promoters of insulin: mechanistic evaluations. Pharm Res. 1992;9:1157–63.

    CAS  PubMed  Google Scholar 

  80. Duan X, Mao S. New strategies to improve the intranasal absorption of insulin. Drug Disc Today. 2010;15:416–27.

    CAS  Google Scholar 

  81. Baker G, Chetwin K, Hayward K, Bakirtzi K, Willman M. The effect of nitric oxide on the permeability of nasal epithelial cells from healthy and asthmatic donors. Med Sci Monit. 2003;9:276–82.

    Google Scholar 

  82. Matsuyama T, Morita T, Horikiri Y, Yamahara H, Yoshino H. Enhancement of nasal absorption of large molecular weight compounds by combination of mucolytic agent and nonionic surfactant. J Control Release. 2006;110:347–52.

    CAS  PubMed  Google Scholar 

  83. Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev. 2009;61:140–57.

    CAS  PubMed  Google Scholar 

  84. Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release. 2012;161:781–94.

    CAS  PubMed  Google Scholar 

  85. Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32:9826–38.

    CAS  PubMed  Google Scholar 

  86. Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release. 2009;135:144–51.

    CAS  PubMed  Google Scholar 

  87. Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm. 2005;288:289–93.

    CAS  PubMed  Google Scholar 

  88. Jain AK, Khar RK, Ahmed FJ, Diwan PV. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm. 2008;69:426–35.

    CAS  PubMed  Google Scholar 

  89. Bernkop-Schnürch A, Hornof M, Guggi D. Thiolated chitosans. Eur J Pharm Biopharm. 2004;57:9–17.

    PubMed  Google Scholar 

  90. Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules. 2009;10:243–9.

    CAS  PubMed  Google Scholar 

  91. Krauland AH, Alonso MJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm. 2007;340:134–42.

    CAS  PubMed  Google Scholar 

  92. Goycoolea FM, Lollo G, Remuñán-López C, Quaglia F, Alonso MJ. Chitosan/alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules. 2009;10:1736–43.

    CAS  PubMed  Google Scholar 

  93. Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42:445–51.

    CAS  PubMed  Google Scholar 

  94. Prego C, Garcia M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release. 2005;101:151–62.

    CAS  PubMed  Google Scholar 

  95. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Basenbacher F, Kjems J. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84.

    CAS  PubMed  Google Scholar 

  96. Mangal S, Pawar D, Garg NK, Jain AK, Vyas SP, Raman Rao DSV, Jaganathan KS. Pharmaceutical and immunological evaluation of mucoadhesive nanoparticles based delivery system(s) administered intranasally. Vaccine. 2011;29:4953–62.

    CAS  PubMed  Google Scholar 

  97. Borges O, Cordeiro-da-Silva A, Tavares J, Santarem N, de Sousa A, Borchard G, Junginger HE. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm. 2008;69:405–16.

    CAS  PubMed  Google Scholar 

  98. Li XY, Kong XY, Shi SA, Zheng XL, Guo G, Wei YQ, Qian ZY. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol. 2008;8:89.

    PubMed Central  PubMed  Google Scholar 

  99. Tafaghodi M, SA Sajadi Tabassi, Jaafari MR. Induction of systemic and mucosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN. Int J Pharm. 2006;319:37–43.

    CAS  PubMed  Google Scholar 

  100. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209.

    CAS  PubMed  Google Scholar 

  101. Yin YS, Chen DW, Qiao MX, Lu Z, Hu HY. Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J Control Release. 2006;116:337–45.

    CAS  PubMed  Google Scholar 

  102. Yin YS, Chen DW, Qiao MX, Wei XY, Hu HY. Lectin-conjugated PLGA nanoparticles loaded with thymopentin: ex vivo bioadhesion and in vivo biodistribution. J Control Release. 2007;123:27–38.

    CAS  PubMed  Google Scholar 

  103. Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci. 2008;97:71–87.

    CAS  PubMed  Google Scholar 

  104. Kumar PS, Saini TR, Chandrasekar D, Yellepeddi VK, Ramakrishna S, Diwan PV. Novel approach for delivery of insulin loaded poly(lactide-co-glycolide) nanoparticles using a combination of stabilizers. Drug Deliv. 2007;14:517–23.

    CAS  PubMed  Google Scholar 

  105. Shi K, Cui F, Yamamoto H, Kawashima Y. Optimized formulation of high-payload PLGA nanoparticles containing insulin-lauryl sulfate complex. Drug Dev Ind Pharm. 2009;35:177–84.

    CAS  PubMed  Google Scholar 

  106. Cui F, Qian F, Yin C. Preparation and characterization of mucoadhesive polymer-coated nanoparticles. Int J Pharm. 2006;316:154–61.

    CAS  PubMed  Google Scholar 

  107. Simon M, Behrens I, Dailey LA, Wittmar M, Kissel T. Nanosized insulin-complexes based on biodegradable amine-modified graft polyesters poly[inyl-3-(diethylamino) propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft-poly-(L-lactic acid): protection against enzymatic degradation, interaction with Caco-2 cell monolayers, peptide transport and cytotoxicity. Eur J Pharm Biopharm. 2007;66:165–72.

    CAS  PubMed  Google Scholar 

  108. Sundaram S, Roy SK, Ambati BK, Kompella UB. Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium. FASEB J. 2009;23:3752–65.

    CAS  PubMed  Google Scholar 

  109. Elvin SJ, Eyles JE, Howard KA, Ravichandran E, Somavarappu S, Alpar HO, Williamson ED. Protection against bubonic and pneumonic plague with a single dose microencapsulated sub-unit vaccine. Vaccine. 2006;24:4433–9.

    CAS  PubMed  Google Scholar 

  110. Florindo HF, Pandit S, Gonçalves LMD, Alpar HO, Almeida AJ. New approach on the development of a mucosal vaccine against strangles: systemic and mucosal immune responses in a mouse model. Vaccine. 2009;27:1230–41.

    CAS  PubMed  Google Scholar 

  111. Jain AK, Goyal AK, Gupta PN, Khatri K, Mishra N, Mehta A, Mangal S, Vyas SP. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release. 2009;136:161–9.

    CAS  PubMed  Google Scholar 

  112. Jain AK, Goval AK, Mishra N, Vaidya B, Mangal S, Vyas SP. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm. 2010;387:253–62.

    CAS  PubMed  Google Scholar 

  113. Vila A, Sanchez A, Evora C, Soriano I, McCallion O, Alonso MJ. PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm. 2005;292:43–52.

    CAS  PubMed  Google Scholar 

  114. Csaba N, Sanchez A, Alonso MJ. PLGA: poloxamer and PLGA: poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release. 2006;113:164–72.

    CAS  PubMed  Google Scholar 

  115. Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnürch A. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials. 2011;32:4052–7.

    CAS  PubMed  Google Scholar 

  116. Singh J, Pandit S, Bramwell VW, Alpar HO. Diphtheria toxoid loaded poly(-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods. 2006;38:96–105.

    CAS  PubMed  Google Scholar 

  117. Voltan R, Castaldello A, Brocca-Cofano E, Altavilla G, Caputo A, Laus M, Sparnacci K, Ensoli B, Spaccasassi S, Ballestri M, Tondelli L. Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes. Pharm Res. 2007;24:1870–82.

    CAS  PubMed  Google Scholar 

  118. Stano A, van der Vlies AJ, Martino MM, Swartz MA, Hubbella JA, Smeoni E. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine. 2011;29:804–12.

    CAS  PubMed  Google Scholar 

  119. Matsuo K, Koizumi H, Akashi M, Nakagawa S, Fujita T, Yamamoto A, Okada N. Intranasal immunization with poly(γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J Control Release. 2011;152:310–6.

    CAS  PubMed  Google Scholar 

  120. Wegmann F, Gartlan KH, Harandi AM, Brinckmann SA, Coccia M, Hillson WR, Kok WL, Cole S, Ho LP, Lambe T, Puthia M, Svanborg C, Scherer EM, Krashias G, Williams A, Blattman JN, Greenberg PD, Flavell RA, Moghaddam AE, Sheppard NC, Sattentau QJ. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nature Biotech. 2012;30:883–8.

    CAS  Google Scholar 

  121. Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater. 2010;9:572–8.

    CAS  PubMed  Google Scholar 

  122. Rawat M, Singh D, Saraf S, Saraf S. Lipid carriers: a versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi. 2008;128:269–80.

    CAS  PubMed  Google Scholar 

  123. Kiparissides C, Kammona O. Nanotechnology advances in controlled drug delivery systems. Phys Stat Solidi C. 2008;5:3828–33.

    CAS  Google Scholar 

  124. Grenha A, Remuñán-López C, Carvalho ELS, Seijo B. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm. 2008;69:83–93.

    CAS  PubMed  Google Scholar 

  125. Tafaghodi M, Jaafari MR, Sajadi Tabassi SA. Nasal immunization studies using liposomes loaded with tetanus toxoid and CpG-ODN. Eur J Pharm Biopharm. 2006;64:138–45.

    CAS  PubMed  Google Scholar 

  126. Joseph A, Itskovitz-Cooper N, Samira S, Flasterstein O, Eliyahu H, Simberg D, Goldwaser I, Barenholz Y, Kedar E. A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS) I. Immunogenicity and efficacy studies in mice. Vaccine. 2006;24:3990–4006.

    CAS  PubMed  Google Scholar 

  127. Gupta PN, Vyas SP. Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf B Biointerfaces. 2011;82:118–25.

    CAS  PubMed  Google Scholar 

  128. Kunisawa J, Nakanishi T, Takahashi I, Okudaira A, Tsutsumi Y, Katayama K, Nakagawa S, Kiyono H, Mayumi T. Sendai virus fusion protein mediates simultaneous induction of MHC class I/II-dependent mucosal and systemic immune responses via the nasopharyngeal-associated lymphoreticular tissue immune system. J Immunol. 2001;167:1406–12.

    CAS  PubMed  Google Scholar 

  129. Yuba E, Kojima C, Harada A, Tana, Watarai S, Kono K. pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity. Biomaterials. 2010;31:943–51.

    CAS  PubMed  Google Scholar 

  130. Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine. 2008;26:2225–33.

    CAS  PubMed  Google Scholar 

  131. Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm. 2008;356:333–44.

    CAS  PubMed  Google Scholar 

  132. Saraf S, Mishra D, Asthana A, Jain R, Singh S, Jain NK. Lipid microparticles for mucosal immunization against hepatitis B. Vaccine. 2006;24:45–56.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yuba, E., Kono, K. (2014). Nasal Delivery of Biopharmaceuticals. In: das Neves, J., Sarmento, B. (eds) Mucosal Delivery of Biopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9524-6_8

Download citation

Publish with us

Policies and ethics