Mucus as a Barrier for Biopharmaceuticals and Drug Delivery Systems

  • Hongbo Zhang
  • Mohammed-Ali Shahbazi
  • Patrick V. Almeida
  • Hélder A. Santos


Over the past few decades, mucosal drug delivery systems have received great attention in the literature. Mucus is a complex system that lubricates and protects the biological barriers such as the human lungs, gastrointestinal tract, vagina, and the eyes. It also serves as a physical selective barrier allowing the rapid passage of small (e.g., ions) and relatively large molecules (e.g., proteins), and blocking many others (e.g., pathogens and ultrafine particles). The unique rheological and adhesive properties of mucus protect the epithelium from both mechanical forces and foreign pathogens and particles, leading to a rapid mucus secretion and clearance rate which limit the residence time of administered biopharmaceuticals and drug delivery systems. Thus, dosage forms are designed with mucoadhesion properties in order to adhere to mucosal membranes to enable prolonged retention time at the site of absorption, control the drug release, and increase the drug plasma concentrations and the therapeutic activity. The mucoadhesive ability of the dosage forms depends on various factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. In this chapter, we start by briefly introducing some of the important properties of mucus and mucosal membranes that need to be overcome in drug delivery applications. We then address some of the roles of mucus in blocking nanoparticulate drug delivery systems. We further highlight the mucoadhesive properties of particulates, the design and development of mucus-penetrating delivery systems to avoid rapid mucus clearance and to provide targeted or sustained drug delivery for localized therapies in mucosal tissues (e.g., buccal, nasal, ocular, gastro, vaginal, and rectal). Next, we also present an example of mucus-penetrating particles used to target a disease state mucosa. Finally, we conclude the chapter with a brief overview of our visions of the future of mucoadhesive drug delivery systems and their potential to overcome the mucus limitations in drug delivery.


Drug delivery Mucus Mucosal barrier Nanoparticle Mucoadhesion Penetration Mucoadhesive drug delivery systems Mucus-penetrating particle Polymer 



Hélder A. Santos acknowledges the Academy of Finland (projects numbers 252215 and 256394), the University of Helsinki, and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement number 310892 for financial support.


  1. 1.
    Shmulewitz A, Langer R. The ascendance of combination products. Nat Biotechnol. 2006;24(3):277–80.PubMedGoogle Scholar
  2. 2.
    Santos HA, Bimbo LM, Lehto VP, Airaksinen AJ, Salonen J, Hirvonen J. Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr Drug Discov Technol. 2011;8(3)228–49.Google Scholar
  3. 3.
    Langer R. Drug delivery and targeting. Nature. 1998;392(6679 Suppl):5–10.Google Scholar
  4. 4.
    Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–9.PubMedGoogle Scholar
  5. 5.
    Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popovic Z, Jain RK, Bawendi MG, Fukumura D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad U S A 2011;108(6):2426–31.Google Scholar
  6. 6.
    Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994;54(13):3352–6.PubMedGoogle Scholar
  7. 7.
    Jiang X-M, Wang L-M, Chen C-Y. Cellular uptake, intracellular trafficking and biological responses of gold nanoparticles. J Chinese Chem Soc. 2011;58(3):273–81.Google Scholar
  8. 8.
    Chiu Y-L, Ho Y-C, Chen Y-M, Peng S-F, Ke C-J, Chen K-J, Mi F-L, Sung H-W. The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J Control Release. 2010;146(1):152–9.PubMedGoogle Scholar
  9. 9.
    Tarn D, Xue M, Zink JI. pH-responsive dual cargo delivery from mesoporous silica nanoparticles with a metal-latched nanogate. Inorg Chem. 2013;52(4):2044–9.Google Scholar
  10. 10.
    Agostini A, Mondragon L, Bernardos A, Martinez-Manez R, Marcos MD, Sancenon F, Soto J, Costero A, Manguan-Garcia C, Perona R, Moreno-Torres M, Aparicio-Sanchis R, Murguia JR. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed Engl. 2012;51(42):10556–60.Google Scholar
  11. 11.
    Aznar E, Mondragon L, Ros-Lis JV, Sancenon F, Marcos MD, Martinez-Manez R, Soto J, Perez-Paya E, Amoros P. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles. Angew Chem Int Ed Engl. 2011;50(47):11172–5.Google Scholar
  12. 12.
    Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.PubMedGoogle Scholar
  13. 13.
    Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–64.PubMedGoogle Scholar
  14. 14.
    Ishida M, Machida Y, Nambu N, Nagai T. New mucosal dosage form of insulin. Chem Pharm Bull. 1981;29(3):810–6.PubMedGoogle Scholar
  15. 15.
    Nagai T. Adhesive topical drug delivery system. J Control Release. 1985;2:121–34.Google Scholar
  16. 16.
    Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18.Google Scholar
  17. 17.
    Bagan J, Paderni C, Termine N, Campisi G, Lo Russo L, Compilato D, Di Fede O. Mucoadhesive polymers for oral transmucosal drug delivery: a review. Curr Pharm Des. 2012;18(34):5497–514.Google Scholar
  18. 18.
    de Araujo Pereira RR, Bruschi ML. Vaginal mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 2012;38(6)643–52.Google Scholar
  19. 19.
    Shinkar DM, Dhake AS, Setty CM. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems. PDA J Pharm Sci Technol/PDA. 2012;66(5):466–500.Google Scholar
  20. 20.
    Singh RM, Kumar A, Pathak K. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery. Expert Opin Drug Deliv. 2013;10(1):115–30.PubMedGoogle Scholar
  21. 21.
    Swain S, Behera A, Beg S, Patra CN, Dinda SC, Sruti J, Rao ME. Modified alginate beads for mucoadhesive drug delivery system: an updated review of patents. Recent Pat Drug Deliv Formul. 2012;6(3):259–77.PubMedGoogle Scholar
  22. 22.
    Sandri G, Rossi S, Ferrari F, Bonferoni MC, Zerrouk N, Caramella C. Mucoadhesive and penetration enhancement properties of three grades of hyaluronic acid using porcine buccal and vaginal tissue, Caco-2 cell lines, and rat jejunum. J Pharm Pharmacol. 2004;56(9):1083–90.PubMedGoogle Scholar
  23. 23.
    Bonferoni MC, Chetoni P, Giunchedi P, Rossi S, Ferrari F, Burgalassi S, Caramella C. Carrageenan-gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies. Eur J Pharm Biopharm 2004;57(3):465–72.Google Scholar
  24. 24.
    Sandri G, Rossi S, Ferrari F, Bonferoni MC, Muzzarelli C, Caramella C. Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. Eur J Pharm Sci. 2004;21(2–3):351–59.Google Scholar
  25. 25.
    Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech. 2010;11(1):362–71.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Ensign LM, Schneider C, Suk JS, Cone R, Hanes J. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv Mater. 2012;24(28):3887–94.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(3):e25–34.PubMedGoogle Scholar
  28. 28.
    Carvalho FC, Rocha e Silva H, da Luz GM, Barbi Mda S, Landgraf DS, Chiavacci LA, Sarmento VH, Gremiao MP. Rheological, mechanical and adhesive properties of surfactant-containing systems designed as a potential platform for topical drug delivery. J Biomed Nanotechnol. 2012;8(2):280–9.PubMedGoogle Scholar
  29. 29.
    Gee CM, Nicolazzo JA, Watkinson AC, Finnin BC. Assessment of the lateral diffusion and penetration of topically applied drugs in humans using a novel concentric tape stripping design. Pharm Res. 2012;29(8):2035–46.Google Scholar
  30. 30.
    Fulgencio Gde O, Viana FA, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Junior Ada S. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012;28(4):350–8.Google Scholar
  31. 31.
    Liu J, Wang Z, Liu C, Xi H, Li C, Chen Y, Sun L, Mu L, Fang L. Silicone adhesive, a better matrix for tolterodine patches-a research based on in vitro/in vivo studies. Drug Dev Ind Pharm. 2012;38(8):1008–14.PubMedGoogle Scholar
  32. 32.
    Mahmoud AA, El-Feky GS, Kamel R, Awad GE. Chitosan/sulfobutylether-beta-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm. 2011;413(1–2):229–36.PubMedGoogle Scholar
  33. 33.
    Movassaghian S, Barzegar-Jalali M, Alaeddini M, Hamedyazdan S, Afzalifar R, Zakeri-Milani P, Mohammadi G, Adibkia K. Development of amitriptyline buccoadhesive tablets for management of pain in dental procedures. Drug Dev Ind Pharm. 2011;37(7):849–54.PubMedGoogle Scholar
  34. 34.
    Al-Hezaimi K, Al-Askar M, Selamhe Z, Fu JH, Alsarra IA, Wang HL. Evaluation of novel adhesive film containing ketorolac for post-surgery pain control: a safety and efficacy study. J Periodontol. 2011;82(7):963–8.PubMedGoogle Scholar
  35. 35.
    Morrow DI, McCarron PA, Woolfson AD, Juzenas P, Juzeniene A, Iani V, Moan J, Donnelly RF. Novel patch-based systems for the localised delivery of ALA-esters. J Photochem Photobiol B. 2010;101(1):59–69.PubMedGoogle Scholar
  36. 36.
    Gullick DR, Pugh WJ, Ingram MJ, Cox PA, Moss GP. Formulation and characterization of a captopril ethyl ester drug-in-adhesive-type patch for percutaneous absorption. Drug Dev Ind Pharm. 2010;36(8):926–32.Google Scholar
  37. 37.
    Zhang J, Deng L, Zhao H, Liu M, Jin H, Li J, Dong A. Pressure-sensitive adhesive properties of poly(N-vinyl pyrrolidone)/D, L-lactic acid oligomer/glycerol/water blends for TDDS. J Biomater Sci Polym Ed. 2010;21(1):1–15.Google Scholar
  38. 38.
    Jones DS, Bruschi ML, de Freitas O, Gremiao MP, Lara EH, Andrews GP. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int J Pharm. 2009;372(1–2):49–58.Google Scholar
  39. 39.
    Hung CF, Lin YK, Huang ZR, Fang JY. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol Pharm Bull. 2008;31(5):955–62.PubMedGoogle Scholar
  40. 40.
    Martin MD, Sherman J, van der Ven P, Burgess J. A controlled trial of a dissolving oral patch concerning glycyrrhiza (licorice) herbal extract for the treatment of aphthous ulcers. Gen Dent. 2008;56(2):206–10; quiz 211–202, 224.Google Scholar
  41. 41.
    Chandrashekar NS, Hiremath SR. Transdermal delivery of 5-fluorouracil for induced ehrlich ascites carcinoma tumor in BALB/c mice and pharmacokinetic study. Recent Pat Anticancer Drug Discov. 2007;2(3):235–9.PubMedGoogle Scholar
  42. 42.
    Abdulmajed K, Heard CM. Topical delivery of retinyl ascorbate. 3. Influence of follicle sealing and skin stretching. Skin Pharmacol Physiol. 2008;21(1):46–9.PubMedGoogle Scholar
  43. 43.
    Jain AK, Chalasani KB, Khar RK, Ahmed FJ, Diwan PV. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J Drug Target. 2007;15(6):417–27.PubMedGoogle Scholar
  44. 44.
    Valtcheva-Sarker RV, O’Reilly JD, Sarker DK. Administration of drug and nutritional components in nano-engineered form to increase delivery ratio and reduce current inefficient practice. Recent Pat Drug Deliv Formul. 2007;1(2):147–59.PubMedGoogle Scholar
  45. 45.
    Donnelly RF, McCarron PA, Zawislak AA, Woolfson AD. Design and physicochemical characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod. Int J Pharm. 2006;307(2):318–25.PubMedGoogle Scholar
  46. 46.
    Barnhart K. Vaginal drug delivery. IDrugs. 1999;2(8):756–9.Google Scholar
  47. 47.
    Jones DS, Lawlor MS, Woolfson AD. Rheological and mucoadhesive characterization of polymeric systems composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone), designed as platforms for topical drug delivery. J Pharm Sci. 2003;92(5):995–1007.PubMedGoogle Scholar
  48. 48.
    Bian S, Doh HJ, Zheng J, Kim JS, Lee CH, Kim DD. In vitro evaluation of patch formulations for topical delivery of gentisic acid in rats. Eur J Pharm Sci. 2003;18(2):141–7.Google Scholar
  49. 49.
    Baeyens V, Felt-Baeyens O, Rougier S, Pheulpin S, Boisrame B, Gurny R. Clinical evaluation of bioadhesive ophthalmic drug inserts (BODI) for the treatment of external ocular infections in dogs. J Control Release. 2002;85(1–3):163–8.Google Scholar
  50. 50.
    Artusi M, Santi P, Colombo P, Junginger HE. Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies. Int J Pharm. 2003;250(1):203–13.PubMedGoogle Scholar
  51. 51.
    Taware CP, Mazumdar S, Pendharkar M, Adani MH, Devarajan PV. A bioadhesive delivery system as an alternative to infiltration anesthesia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(6):609–15.PubMedGoogle Scholar
  52. 52.
    Genta I, Conti B, Perugini P, Pavanetto F, Spadaro A, Puglisi S. Bioadhesive microspheres for ophthalmic administration of acyclovir. J Pharm Pharmacol. 1997;49(8):737–42.PubMedGoogle Scholar
  53. 53.
    Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109(5):571–7.Google Scholar
  54. 54.
    Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Lai SK, Wang YY, Hida K, Cone R, Hanes J. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci U S A. 2010;107(2):598–603.Google Scholar
  56. 56.
    Lai SK, Wang YY, Cone R, Wirtz D, Hanes J. Altering mucus rheology to “solidify” human mucus at the nanoscale. PloS One. 2009;4(1):e4294.Google Scholar
  57. 57.
    Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, Hanes J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.Google Scholar
  58. 58.
    Lai SK, Wang YY, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev. 2009;61(2):86–100.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Samet JM, Cheng PW. The role of airway mucus in pulmonary toxicology. Environ Health Perspect. 1994;102(Suppl 2):89–103.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Quraishi MS, Jones NS, Mason J. The rheology of nasal mucus: a review. Clin Otolaryngol Allied Sci. 1998;23(5):403–13.PubMedGoogle Scholar
  61. 61.
    Allen A, Flemstrom G, Garner A, Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev. 1993;73(4):823–57.PubMedGoogle Scholar
  62. 62.
    Carlstedt I, Lindgren H, Sheehan JK, Ulmsten U, Wingerup L. Isolation and characterization of human cervical-mucus glycoproteins. Biochem J. 1983;211(1):13–22.PubMedGoogle Scholar
  63. 63.
    Chao CC, Butala SM, Herp A. Studies on the isolation and composition of human ocular mucin. Exp Eye Res. 1988;47(2):185–96.PubMedGoogle Scholar
  64. 64.
    Engel E, Guth PH, Nishizaki Y, Kaunitz JD. Barrier function of the gastric mucus gel. Am J Physiol. 1995;269(6 Pt 1):G994–9.Google Scholar
  65. 65.
    Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl. 2008;47(50):9726–9.Google Scholar
  66. 66.
    Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J. 2001;81(4):1930–7.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci. 2010;10(12):1473–83.PubMedGoogle Scholar
  68. 68.
    Yoncheva K, Gomez S, Campanero MA, Gamazo C, Irache JM. Bioadhesive properties of pegylated nanoparticles. Expert Opin Drug Deliv. 2005;2(2):205–18.PubMedGoogle Scholar
  69. 69.
    Saltzman WM, Radomsky ML, Whaley KJ, Cone RA. Antibody diffusion in human cervical mucus. Biophys J. 1994;66(2 Pt 1):508–15.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Corthesy B, Kraehenbuhl JP. Antibody-mediated protection of mucosal surfaces. Curr Top Microbiol Immunol. 1999;236:93–111.PubMedGoogle Scholar
  71. 71.
    Larhed AW, Artursson P, Grasjo J, Bjork E. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci. 1997;86(6):660–5.PubMedGoogle Scholar
  72. 72.
    Matthes I, Nimmerfall F, Vonderscher J, Sucker H. Mucus models for investigation of intestinal absorption mechanisms. 4. Comparison of mucus models with absorption models in vivo and in situ for prediction of intestinal drug absorption. Pharmazie. 1992;47(10):787–91.PubMedGoogle Scholar
  73. 73.
    Kas HS. Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul. 1997;14(6):689–711.Google Scholar
  74. 74.
    Dawson M, Wirtz D, Hanes J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem. 2003;278(50):50393–401.PubMedGoogle Scholar
  75. 75.
    Thornton DJ, Sheehan JK. From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc. 2004;1(1):54–61.Google Scholar
  76. 76.
    Wolf DP, Blasco L, Khan MA, Litt M. Human cervical mucus. I. Rheologic characteristics. Fertil Steril. 1977;28(1):41–6.PubMedGoogle Scholar
  77. 77.
    Boucher RC, Stutts MJ, Bromberg PA, Gatzy JT. Regional differences in airway surface liquid composition. J Appl Physiol. 1981;50(3):613–20.PubMedGoogle Scholar
  78. 78.
    Girod S, Galabert C, Lecuire A, Zahm JM, Puchelle E. Phospholipid composition and surface-active properties of tracheobronchial secretions from patients with cystic fibrosis and chronic obstructive pulmonary diseases. Pediatr Pulmonol. 1992;13(1):22–7.PubMedGoogle Scholar
  79. 79.
    Yeates DB, Besseris GJ, Wong LB. Physicochemical properties of mucus and its propulsion. In: Crystal RG, et al. editors. The lung: scientific foundations. Philadelphia: Lippincott-Raven; 1997. pp. 487–503.Google Scholar
  80. 80.
    Lamont JT. Mucus: the front line of intestinal mucosal defense. Ann N Y Acad Sci. 1992;664:190–201.Google Scholar
  81. 81.
    Lethem MI, James SL, Marriott C. The role of mucous glycoproteins in the rheologic properties of cystic fibrosis sputum. Am Rev Respir Dis. 1990;142(5):1053–8.PubMedGoogle Scholar
  82. 82.
    Cone R. Mucus. In: Ogra PL, et al. editors. Mucosal immunology. San Diego: Academic; 1999. pp. 43–64.Google Scholar
  83. 83.
    App EM, Zayas JG, King M. Rheology of mucus and transepithelial potential difference: small airways versus trachea. Eur Respir J. 1993;6(1):67–75.Google Scholar
  84. 84.
    Rubin BK, Druce H, Ramirez OE, Palmer R. Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am J Respir Crit Care Med. 1997;155(6):2018–23.PubMedGoogle Scholar
  85. 85.
    Rubin BK. Mucus structure and properties in cystic fibrosis. Paediatric Respir Rev. 2007;8(1):4–7.Google Scholar
  86. 86.
    Voynow JA, Gendler SJ, Rose MC. Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol. 2006;34(6):661–5.PubMedGoogle Scholar
  87. 87.
    Hattori M, Majima Y, Ukai K, Sakakura Y. Effects of nasal allergen challenge on dynamic viscoelasticity of nasal mucus. Ann Otol Rhinol Laryngol. 1993;102(4 Pt 1):314–7.PubMedGoogle Scholar
  88. 88.
    Allen A, Cunliffe WJ, Pearson JP, Sellers LA, Ward R. Studies on gastrointestinal mucus. Scand J Gastroenterol. 1984;Supplement 93:101–13.Google Scholar
  89. 89.
    Clift AF. Early studies on the rheology of cervical mucus. Am J Obstetr Gynecol. 1979;134(7):829–32.Google Scholar
  90. 90.
    Shahbazi MA, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab. 2013;14(1):28–56.Google Scholar
  91. 91.
    Wood KM, Stone GM, Peppas NA. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models. Acta Biomaterialia. 2010;6(1):48–56.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Meth. 2000;44(1):301–12.Google Scholar
  93. 93.
    Antunes F, Andrade F, Araujo F, Ferreira D, Sarmento B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Euro J Pharm Biopharm. 2013;83(3):427–35.Google Scholar
  94. 94.
    Wikman A, Karlsson J, Carlstedt I, Artursson P. A drug absorption model based on the mucus layer producing human intestinal goblet cell line HT29-H. Pharm Res. 1993;10(6):843–52.Google Scholar
  95. 95.
    Keely S, Rullay A, Wilson C, Carmichael A, Carrington S, Corfield A, Haddleton DM, Brayden DJ. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly (methacrylate) and N-trimethylated chitosan polymers. Pharm Res. 2005;22(1):38–49.PubMedGoogle Scholar
  96. 96.
    Nollevaux G, Deville C, El Moualij B, Zorzi W, Deloyer P, Schneider YJ, Peulen O, Dandrifosse G. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29–5M21). BMC Cell Biol. 2006;7:20.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem. 2009;20(7):494–502.PubMedGoogle Scholar
  98. 98.
    Gamboa JM, Leong KW. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. 2013;65(6):800–10.Google Scholar
  99. 99.
    Barthe L, Woodley JF, Kenworthy S, Houin G. An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. Eur J Drug Metab Pharmacokinet. 1998;23:313–23.PubMedGoogle Scholar
  100. 100.
    Alam MA, Al-Jenoobi FI, Al-Mohizea AM. Everted gut sac model as a tool in pharmaceutical research: limitations and applications. J Pharm Pharmacol. 2012;64(3):326–36.PubMedGoogle Scholar
  101. 101.
    Carreno-Gomez B, Duncan R. Everted rat intestinal sacs: a new model for the quantitation of P-glycoprotein mediated-efflux of anticancer agents. Anticancer Res. 2000;20(5A):3157–61.PubMedGoogle Scholar
  102. 102.
    van de Kerkhof EG, de Graaf IA, Ungell AL, Groothuis GM. Induction of metabolism and transport in human intestine: validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro. Drug Metab Dispos. 2008;36(3):604–13.Google Scholar
  103. 103.
    van de Kerkhof EG, de Graaf IA, Groothuis GM. In vitro methods to study intestinal drug metab. Curr Drug Metabol. 2007;8(7):658–75.Google Scholar
  104. 104.
    Groothuis GM, de Graaf IA. Precision-cut intestinal slices as in vitro tool for studies on drug metab. Curr Drug Metabol. 2013;14(1):112–9.Google Scholar
  105. 105.
    van Midwoud PM, Merema MT, Verpoorte E, Groothuis GM. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip. 2010;10(20):2778–86.PubMedGoogle Scholar
  106. 106.
    de Kanter R, Tuin A, van de Kerkhof E, Martignoni M, Draaisma AL, de Jager MH, de Graaf IA, Meijer DK, Groothuis GM. A new technique for preparing precision-cut slices from small intestine and colon for drug biotransformation studies. J Pharmacol Toxicol Meth. 2005;51(1):65–72.Google Scholar
  107. 107.
    Boddupalli BM, Mohammed ZN, Nath RA, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1(4):381–7.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–68.PubMedGoogle Scholar
  109. 109.
    Derjaguin BV, Aleinikova IN, Toporov YP. On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Progr Surf Sci. 1994;45(1–4):119–23.Google Scholar
  110. 110.
    Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Gu JM, Robinson JR, Leung SH. Binding of acrylic polymers to mucin/epithelial surfaces: structure-property relationships. Crit Rev Ther Drug Carrier Syst. 1988;5(1):21–67.PubMedGoogle Scholar
  112. 112.
    Dodou D, Breedveld P, Wieringa PA. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm. 2005;60(1):1–16.PubMedGoogle Scholar
  113. 113.
    das Neves J, Amiji M, Sarmento B. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? Wiley Interdiscip Rev Nanomed Nanobiotechnol.. 2011;3(4):389–99.Google Scholar
  114. 114.
    das Neves J, Bahia MF, Amiji MM, Sarmento B. Mucoadhesiveicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv. 2011;8(8):1085–104.Google Scholar
  115. 115.
    Andrews GP, Donnelly L, Jones DS, Curran RM, Morrow RJ, Woolfson AD, Malcolm RK. Characterization of the rheological, mucoadhesive, and drug release properties of highly structured gel platforms for intravaginal drug delivery. Biomacromolecules. 2009;10(9):2427–35.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Gurny R, Meyer JM, Peppas NA. Bioadhesive intraoral release systems: design, testing and analysis. Biomaterials. 1984;5(6):336–40.PubMedGoogle Scholar
  117. 117.
    Tiwari D, Goldman D, Sause R, Madan PL. Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations. AAPS PharmSci. 1999;1(3):E13.Google Scholar
  118. 118.
    McCarron PA, Woolfson AD, Donnelly RF, Andrews GP, Zawislak A, Price JH. Influence of plasticizer type and storage conditions on properties of poly(methyl vinyl ether-co-maleic anhydride) bioadhesive films. J Appl Polym Sci. 2004;91(3):1576–89.Google Scholar
  119. 119.
    Solomonidou D, Cremer K, Krumme M, Kreuter J. Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films. J Biomater Sci Polym Ed. 2001;12(11):1191–205.PubMedGoogle Scholar
  120. 120.
    Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech. 2004;5(4):e67.PubMedGoogle Scholar
  121. 121.
    Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–75.Google Scholar
  122. 122.
    Patel MM, Smart JD, Nevell TG, Ewen RJ, Eaton PJ, Tsibouklis J. Mucin/poly(acrylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules. 2003;4(5):1184–90.PubMedGoogle Scholar
  123. 123.
    Nikonenko NA, Bushnak IA, Keddie JL. Spectroscopic ellipsometry of mucin layers on an amphiphilic diblock copolymer surface. Appl Spectrosc. 2009;63(8):889–98.PubMedGoogle Scholar
  124. 124.
    Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles. Nanoscale. 2013;5(8):3103–11.Google Scholar
  125. 125.
    Sarmento B, das Neves J, editors. Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. 1st ed. Wiley; 2012.Google Scholar
  126. 126.
    Andrade F, Antunes F, Nascimento AV, da Silva SB, das Neves J, Ferreira D, Sarmento B. Chitosan formulations as carriers for therapeutic proteins. Curr Drug Discov Tech. 2011;8(3):157–72.Google Scholar
  127. 127.
    Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57(11):1569–82.PubMedGoogle Scholar
  128. 128.
    Laffleur F, Bernkop-Schnurch A. Thiomers: promising platform for macromolecular drug delivery. Future Med Chem. 2012;4(17):2205–16.PubMedGoogle Scholar
  129. 129.
    Guggi D, Marschutz MK, Bernkop-Schnurch A. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion. Int J Pharm. 2004;274(1–2):97–105.PubMedGoogle Scholar
  130. 130.
    Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnurch A. Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate. Int J Pharm. 2008;347(1–2):79–85.PubMedGoogle Scholar
  131. 131.
    Nema T, Jain A, Shilpi S, Gulbake A, Hurkat P, Jain SK. Insulin delivery through nasal route using thiolated microspheres. Drug Deliv. 2013;20(5):210–5.Google Scholar
  132. 132.
    Wang J, Tabata Y, Bi D, Morimoto K. Evaluation of gastric mucoadhesive properties of aminated gelatin microspheres. J Control Release. 2001;73(2–3):223–31.Google Scholar
  133. 133.
    Thanou M, Nihot MT, Jansen M, Verhoef JC, Junginger HE. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J Pharm Sci. 2001;90(1):38–46.PubMedGoogle Scholar
  134. 134.
    Tripathi P, Beaussart A, Alsteens D, Dupres V, Claes I, von Ossowski I, de Vos WM, Palva A, Lebeer S, Vanderleyden J, Dufrene YF. Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG. ACS Nano. 2013;7(4):3685–97.Google Scholar
  135. 135.
    Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23–38.Google Scholar
  136. 136.
    Ivanov AE, Nilsson L, Galaev IY, Mattiasson B. Boronate-containing polymers form affinity complexes with mucin and enable tight and reversible occlusion of mucosal lumen by poly(vinyl alcohol) gel. Int J Pharm. 2008;358(1–2):36–43.PubMedGoogle Scholar
  137. 137.
    Perioli L, Ambrogi V, Giovagnoli S, Blasi P, Mancini A, Ricci M, Rossi C. Influence of compression force on the behavior of mucoadhesive buccal tablets. AAPS PharmSciTech. 2008;9(1):274–81.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Shemer A, Amichai B, Trau H, Nathansohn N, Mizrahi B, Domb AJ. Efficacy of a mucoadhesive patch compared with an oral solution for treatment of aphthous stomatitis. Drugs R D. 2008;9(1):29–35.PubMedGoogle Scholar
  139. 139.
    Donnelly RF, McCarron PA, Tunney MM, David Woolfson A. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B. 2007;86(1):59–69.PubMedGoogle Scholar
  140. 140.
    Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist System. Diabetes Metab Res Rev. 2002;18(1):S38–42.PubMedGoogle Scholar
  141. 141.
    Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215–22.PubMedCentralPubMedGoogle Scholar
  142. 142.
    McInnes FJ, O’Mahony B, Lindsay B, Band J, Wilson CG, Hodges LA, Stevens HN. Nasal residence of insulin containing lyophilised nasal insert formulations, using gamma scintigraphy. Eur J Pharm Sci. 2007;31(1):25–31.PubMedGoogle Scholar
  143. 143.
    Coucke D, Schotsaert M, Libert C, Pringels E, Vervaet C, Foreman P, Saelens X, Remon JP. Spray-dried powders of starch and crosslinked poly(acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine. Vaccine. 2009;27(8):1279–86.PubMedGoogle Scholar
  144. 144.
    Sensoy D, Cevher E, Sarici A, Yilmaz M, Ozdamar A, Bergisadi N. Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model. Eur J Pharm Biopharm. 2009;72(3):487–95.PubMedGoogle Scholar
  145. 145.
    de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther. 2008;15(9):668–76.Google Scholar
  146. 146.
    Varum FJ, McConnell EL, Sousa JJ, Veiga F, Basit AW. Mucoadhesion and the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst. 2008;25(3):207–58.PubMedGoogle Scholar
  147. 147.
    Ahmed IS, Ayres JW. Bioavailability of riboflavin from a gastric retention formulation. Int J Pharm. 2007;330(1–2):146–54.PubMedGoogle Scholar
  148. 148.
    Rodes L, Coussa-Charley M, Marinescu D, Paul A, Fakhoury M, Abbasi S, Khan A, Tomaro-Duchesneau C, Prakash S. Design of a novel gut bacterial adhesion model for probiotic applications. Artif Cells Nanomed Biotechnol. 2013;41(2):116–24.PubMedGoogle Scholar
  149. 149.
    Chen S, Cao Y, Ferguson LR, Shu Q, Garg S. Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. J Microencapsul. 2013;30(2):103–15.PubMedGoogle Scholar
  150. 150.
    El-Leithy ES, Shaker DS, Ghorab MK, Abdel-Rashid RS. Evaluation of mucoadhesive hydrogels loaded with diclofenac sodium-chitosan microspheres for rectal administration. AAPS PharmSciTech. 2010;11(4):1695–702.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Bassi P, Kaur G. Innovations in bioadhesive vaginal drug delivery system. Expert Opin Ther Pat. 2012;22(9):1019–32.PubMedGoogle Scholar
  152. 152.
    Pereira RR, Ribeiro Godoy JS, Stivalet Svidzinski TI, Bruschi ML. Preparation and characterization of mucoadhesive thermoresponsive systems containing propolis for the treatment of vulvovaginal candidiasis. J Pharm Sci. 2013;102(4):1222–34.PubMedGoogle Scholar
  153. 153.
    Khanvilkar K, Donovan MD, Flanagan DR. Drug transfer through mucus. Adv Drug Deliv Rev. 2001;48(2–3):173–93.PubMedGoogle Scholar
  154. 154.
    Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci. 1997;63:1481–92.Google Scholar
  155. 155.
    Norris DA, Puri N, Labib ME, Sinko PJ. Determining the absolute surface hydrophobicity of microparticulates using thin layer wicking. J Control Release. 1999;59(2):173–85.Google Scholar
  156. 156.
    Shen H, Hu Y, Saltzman WM. DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophys J. 2006;91(2):639–44.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Ribbeck K. Do viruses use vectors to penetrate mucus barriers? Biosci Hypotheses. 2009;2(6):329–62.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharmaceutics. 2013;10(5):1865–73.Google Scholar
  159. 159.
    Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A. 2009;106(46):19268–73.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Ferrari S, Kitson C, Farley R, Steel R, Marriott C, Parkins DA, Scarpa M, Wainwright B, Evans MJ, Colledge WH, Geddes DM, Alton EW. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther. 2001;8(18):1380–6.PubMedGoogle Scholar
  161. 161.
    Mert O, Lai SK, Ensign L, Yang M, Wang YY, Wood J, Hanes J. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. J Control Release. 2012;157(3):455–60.Google Scholar
  162. 162.
    Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, Hanes J. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra179.Google Scholar
  163. 163.
    Suk JS, Boylan NJ, Trehan K, Tang BC, Schneider CS, Lin JM, Boyle MP, Zeitlin PL, Lai SK, Cooper MJ, Hanes J. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles. Mol Ther. 2011;19(11):1981–9.PubMedGoogle Scholar
  164. 164.
    Boylan NJ, Suk JS, Lai SK, Jelinek R, Boyle MP, Cooper MJ, Hanes J. Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation. J Control Release. 2012;157(1):72–9.Google Scholar
  165. 165.
    Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–46.Google Scholar
  166. 166.
    Siegmund B. Targeted therapies in inflammatory bowel disease. Dig Dis. 2009;27(4):465–9.PubMedGoogle Scholar
  167. 167.
    Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369(9573):1627–40.PubMedGoogle Scholar
  168. 168.
    Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? World J Gastroenterol. 2006;12(38):6102–8.PubMedGoogle Scholar
  169. 169.
    Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.PubMedCentralPubMedGoogle Scholar
  170. 170.
    Zhou SY, Fleisher D, Pao LH, Li C, Winward B, Zimmermann EM. Intestinal metabolism and transport of 5-aminosalicylate. Drug Metab Dispos. 1999;27(4):479–85.PubMedGoogle Scholar
  171. 171.
    Nakase H, Okazaki K, Tabata Y, Uose S, Ohana M, Uchida K, Matsushima Y, Kawanami C, Oshima C, Ikada Y, Chiba T. Development of an oral drug delivery system targeting immune-regulating cells in experimental inflammatory bowel disease: a new therapeutic strategy. J Pharmacol Exp Ther. 2000;292(1):15–21.PubMedGoogle Scholar
  172. 172.
    Mladenovska K, Raicki RS, Janevik EI, Ristoski T, Pavlova MJ, Kavrakovski Z, Dodov MG, Goracinova K. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int J Pharm. 2007;342(1–2):124–36.PubMedGoogle Scholar
  173. 173.
    Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Design of pH-sensitive microspheres for the colonic delivery of the immunosuppressive drug tacrolimus. Eur J Pharm Biopharm. 2004;58(1):37–43.PubMedGoogle Scholar
  174. 174.
    Lamprecht A, Ubrich N, Yamamoto H, Schafer U, Takeuchi H, Lehr CM, Maincent P, Kawashima. Design of rolipram-loaded nanoparticles: comparison of two preparation methods. J Control Release. 2001;71(3):297–306.Google Scholar
  175. 175.
    Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. J Control Release. 2005;104(2):337–46.Google Scholar
  176. 176.
    Makhlof A, Tozuka Y, Takeuchi H. pH-sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72(1):1–8.PubMedGoogle Scholar
  177. 177.
    Pertuit D, Moulari B, Betz T, Nadaradjane A, Neumann D, Ismaili L, Refouvelet B, Pellequer Y, Lamprecht A. 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease. J Control Release. 2007;123(3):211–8.Google Scholar
  178. 178.
    Jubeh TT, Nadler-Milbauer M, Barenholz Y, Rubinstein A. Local treatment of experimental colitis in the rat by negatively charged liposomes of catalase, TMN and SOD. J Drug Target. 2006;14(3):155–63.PubMedGoogle Scholar
  179. 179.
    Tirosh B, Khatib N, Barenholz Y, Nissan A, Rubinstein A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharm. 2009;6(4):1083–91.PubMedGoogle Scholar
  180. 180.
    Serpe L, Canaparo R, Daperno M, Sostegni R, Martinasso G, Muntoni E, Ippolito L, Vivenza N, Pera A, Eandi M, Gasco MR, Zara GP. Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model. Eur J Pharm Sci. 2010;39(5):428–36.PubMedGoogle Scholar
  181. 181.
    Bhol KC, Schechter PJ. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig Dis Sci. 2007;52(10):2732–42.PubMedGoogle Scholar
  182. 182.
    Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.PubMedCentralPubMedGoogle Scholar
  183. 183.
    Owen DA, Reid PE. Histochemical alterations of mucin in normal colon, inflammatory bowel disease and colonic adenocarcinoma. Histochem J. 1995;27(11):882–9.PubMedGoogle Scholar
  184. 184.
    Corfield AP, Carroll D, Myerscough N, Probert CS. Mucins in the gastrointestinal tract in health and disease. Front Biosci. 2001;6:D1321–57.Google Scholar
  185. 185.
    Shirazi T, Longman RJ, Corfield AP, Probert CS. Mucins and inflammatory bowel disease. Postgrad Med J. 2000;76(898):473–8.PubMedGoogle Scholar
  186. 186.
    Stremmel W, Braun A, Hanemann A, Ehehalt R, Autschbach F, Karner M. Delayed release phosphatidylcholine in chronic-active ulcerative colitis: a randomized, double-blinded, dose finding study. J Clin Gastroenterol. 2010;44(5):e101–7.Google Scholar
  187. 187.
    des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.PubMedGoogle Scholar
  188. 188.
    Wang X, Shah AA, Campbell RB, Wan KT. Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery. Appl Phys Lett. 2010;97:26370.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hongbo Zhang
    • 1
  • Mohammed-Ali Shahbazi
    • 1
  • Patrick V. Almeida
    • 1
  • Hélder A. Santos
    • 1
  1. 1.Division of Pharmaceutical Technology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations