Skip to main content

Mucus as a Barrier for Biopharmaceuticals and Drug Delivery Systems

  • Chapter
  • First Online:
Mucosal Delivery of Biopharmaceuticals

Abstract

Over the past few decades, mucosal drug delivery systems have received great attention in the literature. Mucus is a complex system that lubricates and protects the biological barriers such as the human lungs, gastrointestinal tract, vagina, and the eyes. It also serves as a physical selective barrier allowing the rapid passage of small (e.g., ions) and relatively large molecules (e.g., proteins), and blocking many others (e.g., pathogens and ultrafine particles). The unique rheological and adhesive properties of mucus protect the epithelium from both mechanical forces and foreign pathogens and particles, leading to a rapid mucus secretion and clearance rate which limit the residence time of administered biopharmaceuticals and drug delivery systems. Thus, dosage forms are designed with mucoadhesion properties in order to adhere to mucosal membranes to enable prolonged retention time at the site of absorption, control the drug release, and increase the drug plasma concentrations and the therapeutic activity. The mucoadhesive ability of the dosage forms depends on various factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. In this chapter, we start by briefly introducing some of the important properties of mucus and mucosal membranes that need to be overcome in drug delivery applications. We then address some of the roles of mucus in blocking nanoparticulate drug delivery systems. We further highlight the mucoadhesive properties of particulates, the design and development of mucus-penetrating delivery systems to avoid rapid mucus clearance and to provide targeted or sustained drug delivery for localized therapies in mucosal tissues (e.g., buccal, nasal, ocular, gastro, vaginal, and rectal). Next, we also present an example of mucus-penetrating particles used to target a disease state mucosa. Finally, we conclude the chapter with a brief overview of our visions of the future of mucoadhesive drug delivery systems and their potential to overcome the mucus limitations in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shmulewitz A, Langer R. The ascendance of combination products. Nat Biotechnol. 2006;24(3):277–80.

    PubMed  Google Scholar 

  2. Santos HA, Bimbo LM, Lehto VP, Airaksinen AJ, Salonen J, Hirvonen J. Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr Drug Discov Technol. 2011;8(3)228–49.

    Google Scholar 

  3. Langer R. Drug delivery and targeting. Nature. 1998;392(6679 Suppl):5–10.

    Google Scholar 

  4. Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–9.

    CAS  PubMed  Google Scholar 

  5. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popovic Z, Jain RK, Bawendi MG, Fukumura D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad U S A 2011;108(6):2426–31.

    Google Scholar 

  6. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994;54(13):3352–6.

    CAS  PubMed  Google Scholar 

  7. Jiang X-M, Wang L-M, Chen C-Y. Cellular uptake, intracellular trafficking and biological responses of gold nanoparticles. J Chinese Chem Soc. 2011;58(3):273–81.

    CAS  Google Scholar 

  8. Chiu Y-L, Ho Y-C, Chen Y-M, Peng S-F, Ke C-J, Chen K-J, Mi F-L, Sung H-W. The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J Control Release. 2010;146(1):152–9.

    CAS  PubMed  Google Scholar 

  9. Tarn D, Xue M, Zink JI. pH-responsive dual cargo delivery from mesoporous silica nanoparticles with a metal-latched nanogate. Inorg Chem. 2013;52(4):2044–9.

    Google Scholar 

  10. Agostini A, Mondragon L, Bernardos A, Martinez-Manez R, Marcos MD, Sancenon F, Soto J, Costero A, Manguan-Garcia C, Perona R, Moreno-Torres M, Aparicio-Sanchis R, Murguia JR. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed Engl. 2012;51(42):10556–60.

    Google Scholar 

  11. Aznar E, Mondragon L, Ros-Lis JV, Sancenon F, Marcos MD, Martinez-Manez R, Soto J, Perez-Paya E, Amoros P. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles. Angew Chem Int Ed Engl. 2011;50(47):11172–5.

    Google Scholar 

  12. Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.

    CAS  PubMed  Google Scholar 

  13. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–64.

    CAS  PubMed  Google Scholar 

  14. Ishida M, Machida Y, Nambu N, Nagai T. New mucosal dosage form of insulin. Chem Pharm Bull. 1981;29(3):810–6.

    CAS  PubMed  Google Scholar 

  15. Nagai T. Adhesive topical drug delivery system. J Control Release. 1985;2:121–34.

    Google Scholar 

  16. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18.

    Google Scholar 

  17. Bagan J, Paderni C, Termine N, Campisi G, Lo Russo L, Compilato D, Di Fede O. Mucoadhesive polymers for oral transmucosal drug delivery: a review. Curr Pharm Des. 2012;18(34):5497–514.

    CAS  Google Scholar 

  18. de Araujo Pereira RR, Bruschi ML. Vaginal mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 2012;38(6)643–52.

    Google Scholar 

  19. Shinkar DM, Dhake AS, Setty CM. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems. PDA J Pharm Sci Technol/PDA. 2012;66(5):466–500.

    Google Scholar 

  20. Singh RM, Kumar A, Pathak K. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery. Expert Opin Drug Deliv. 2013;10(1):115–30.

    CAS  PubMed  Google Scholar 

  21. Swain S, Behera A, Beg S, Patra CN, Dinda SC, Sruti J, Rao ME. Modified alginate beads for mucoadhesive drug delivery system: an updated review of patents. Recent Pat Drug Deliv Formul. 2012;6(3):259–77.

    CAS  PubMed  Google Scholar 

  22. Sandri G, Rossi S, Ferrari F, Bonferoni MC, Zerrouk N, Caramella C. Mucoadhesive and penetration enhancement properties of three grades of hyaluronic acid using porcine buccal and vaginal tissue, Caco-2 cell lines, and rat jejunum. J Pharm Pharmacol. 2004;56(9):1083–90.

    CAS  PubMed  Google Scholar 

  23. Bonferoni MC, Chetoni P, Giunchedi P, Rossi S, Ferrari F, Burgalassi S, Caramella C. Carrageenan-gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies. Eur J Pharm Biopharm 2004;57(3):465–72.

    Google Scholar 

  24. Sandri G, Rossi S, Ferrari F, Bonferoni MC, Muzzarelli C, Caramella C. Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. Eur J Pharm Sci. 2004;21(2–3):351–59.

    Google Scholar 

  25. Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech. 2010;11(1):362–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Ensign LM, Schneider C, Suk JS, Cone R, Hanes J. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv Mater. 2012;24(28):3887–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(3):e25–34.

    PubMed  Google Scholar 

  28. Carvalho FC, Rocha e Silva H, da Luz GM, Barbi Mda S, Landgraf DS, Chiavacci LA, Sarmento VH, Gremiao MP. Rheological, mechanical and adhesive properties of surfactant-containing systems designed as a potential platform for topical drug delivery. J Biomed Nanotechnol. 2012;8(2):280–9.

    CAS  PubMed  Google Scholar 

  29. Gee CM, Nicolazzo JA, Watkinson AC, Finnin BC. Assessment of the lateral diffusion and penetration of topically applied drugs in humans using a novel concentric tape stripping design. Pharm Res. 2012;29(8):2035–46.

    CAS  Google Scholar 

  30. Fulgencio Gde O, Viana FA, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Junior Ada S. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012;28(4):350–8.

    Google Scholar 

  31. Liu J, Wang Z, Liu C, Xi H, Li C, Chen Y, Sun L, Mu L, Fang L. Silicone adhesive, a better matrix for tolterodine patches-a research based on in vitro/in vivo studies. Drug Dev Ind Pharm. 2012;38(8):1008–14.

    CAS  PubMed  Google Scholar 

  32. Mahmoud AA, El-Feky GS, Kamel R, Awad GE. Chitosan/sulfobutylether-beta-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm. 2011;413(1–2):229–36.

    CAS  PubMed  Google Scholar 

  33. Movassaghian S, Barzegar-Jalali M, Alaeddini M, Hamedyazdan S, Afzalifar R, Zakeri-Milani P, Mohammadi G, Adibkia K. Development of amitriptyline buccoadhesive tablets for management of pain in dental procedures. Drug Dev Ind Pharm. 2011;37(7):849–54.

    CAS  PubMed  Google Scholar 

  34. Al-Hezaimi K, Al-Askar M, Selamhe Z, Fu JH, Alsarra IA, Wang HL. Evaluation of novel adhesive film containing ketorolac for post-surgery pain control: a safety and efficacy study. J Periodontol. 2011;82(7):963–8.

    CAS  PubMed  Google Scholar 

  35. Morrow DI, McCarron PA, Woolfson AD, Juzenas P, Juzeniene A, Iani V, Moan J, Donnelly RF. Novel patch-based systems for the localised delivery of ALA-esters. J Photochem Photobiol B. 2010;101(1):59–69.

    CAS  PubMed  Google Scholar 

  36. Gullick DR, Pugh WJ, Ingram MJ, Cox PA, Moss GP. Formulation and characterization of a captopril ethyl ester drug-in-adhesive-type patch for percutaneous absorption. Drug Dev Ind Pharm. 2010;36(8):926–32.

    Google Scholar 

  37. Zhang J, Deng L, Zhao H, Liu M, Jin H, Li J, Dong A. Pressure-sensitive adhesive properties of poly(N-vinyl pyrrolidone)/D, L-lactic acid oligomer/glycerol/water blends for TDDS. J Biomater Sci Polym Ed. 2010;21(1):1–15.

    Google Scholar 

  38. Jones DS, Bruschi ML, de Freitas O, Gremiao MP, Lara EH, Andrews GP. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int J Pharm. 2009;372(1–2):49–58.

    Google Scholar 

  39. Hung CF, Lin YK, Huang ZR, Fang JY. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol Pharm Bull. 2008;31(5):955–62.

    CAS  PubMed  Google Scholar 

  40. Martin MD, Sherman J, van der Ven P, Burgess J. A controlled trial of a dissolving oral patch concerning glycyrrhiza (licorice) herbal extract for the treatment of aphthous ulcers. Gen Dent. 2008;56(2):206–10; quiz 211–202, 224.

    Google Scholar 

  41. Chandrashekar NS, Hiremath SR. Transdermal delivery of 5-fluorouracil for induced ehrlich ascites carcinoma tumor in BALB/c mice and pharmacokinetic study. Recent Pat Anticancer Drug Discov. 2007;2(3):235–9.

    CAS  PubMed  Google Scholar 

  42. Abdulmajed K, Heard CM. Topical delivery of retinyl ascorbate. 3. Influence of follicle sealing and skin stretching. Skin Pharmacol Physiol. 2008;21(1):46–9.

    CAS  PubMed  Google Scholar 

  43. Jain AK, Chalasani KB, Khar RK, Ahmed FJ, Diwan PV. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J Drug Target. 2007;15(6):417–27.

    CAS  PubMed  Google Scholar 

  44. Valtcheva-Sarker RV, O’Reilly JD, Sarker DK. Administration of drug and nutritional components in nano-engineered form to increase delivery ratio and reduce current inefficient practice. Recent Pat Drug Deliv Formul. 2007;1(2):147–59.

    CAS  PubMed  Google Scholar 

  45. Donnelly RF, McCarron PA, Zawislak AA, Woolfson AD. Design and physicochemical characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod. Int J Pharm. 2006;307(2):318–25.

    CAS  PubMed  Google Scholar 

  46. Barnhart K. Vaginal drug delivery. IDrugs. 1999;2(8):756–9.

    Google Scholar 

  47. Jones DS, Lawlor MS, Woolfson AD. Rheological and mucoadhesive characterization of polymeric systems composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone), designed as platforms for topical drug delivery. J Pharm Sci. 2003;92(5):995–1007.

    CAS  PubMed  Google Scholar 

  48. Bian S, Doh HJ, Zheng J, Kim JS, Lee CH, Kim DD. In vitro evaluation of patch formulations for topical delivery of gentisic acid in rats. Eur J Pharm Sci. 2003;18(2):141–7.

    Google Scholar 

  49. Baeyens V, Felt-Baeyens O, Rougier S, Pheulpin S, Boisrame B, Gurny R. Clinical evaluation of bioadhesive ophthalmic drug inserts (BODI) for the treatment of external ocular infections in dogs. J Control Release. 2002;85(1–3):163–8.

    Google Scholar 

  50. Artusi M, Santi P, Colombo P, Junginger HE. Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies. Int J Pharm. 2003;250(1):203–13.

    CAS  PubMed  Google Scholar 

  51. Taware CP, Mazumdar S, Pendharkar M, Adani MH, Devarajan PV. A bioadhesive delivery system as an alternative to infiltration anesthesia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(6):609–15.

    CAS  PubMed  Google Scholar 

  52. Genta I, Conti B, Perugini P, Pavanetto F, Spadaro A, Puglisi S. Bioadhesive microspheres for ophthalmic administration of acyclovir. J Pharm Pharmacol. 1997;49(8):737–42.

    CAS  PubMed  Google Scholar 

  53. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109(5):571–7.

    Google Scholar 

  54. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lai SK, Wang YY, Hida K, Cone R, Hanes J. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci U S A. 2010;107(2):598–603.

    Google Scholar 

  56. Lai SK, Wang YY, Cone R, Wirtz D, Hanes J. Altering mucus rheology to “solidify” human mucus at the nanoscale. PloS One. 2009;4(1):e4294.

    Google Scholar 

  57. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, Hanes J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.

    Google Scholar 

  58. Lai SK, Wang YY, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev. 2009;61(2):86–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Samet JM, Cheng PW. The role of airway mucus in pulmonary toxicology. Environ Health Perspect. 1994;102(Suppl 2):89–103.

    PubMed Central  PubMed  Google Scholar 

  60. Quraishi MS, Jones NS, Mason J. The rheology of nasal mucus: a review. Clin Otolaryngol Allied Sci. 1998;23(5):403–13.

    CAS  PubMed  Google Scholar 

  61. Allen A, Flemstrom G, Garner A, Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev. 1993;73(4):823–57.

    CAS  PubMed  Google Scholar 

  62. Carlstedt I, Lindgren H, Sheehan JK, Ulmsten U, Wingerup L. Isolation and characterization of human cervical-mucus glycoproteins. Biochem J. 1983;211(1):13–22.

    CAS  PubMed  Google Scholar 

  63. Chao CC, Butala SM, Herp A. Studies on the isolation and composition of human ocular mucin. Exp Eye Res. 1988;47(2):185–96.

    CAS  PubMed  Google Scholar 

  64. Engel E, Guth PH, Nishizaki Y, Kaunitz JD. Barrier function of the gastric mucus gel. Am J Physiol. 1995;269(6 Pt 1):G994–9.

    Google Scholar 

  65. Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl. 2008;47(50):9726–9.

    Google Scholar 

  66. Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J. 2001;81(4):1930–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci. 2010;10(12):1473–83.

    CAS  PubMed  Google Scholar 

  68. Yoncheva K, Gomez S, Campanero MA, Gamazo C, Irache JM. Bioadhesive properties of pegylated nanoparticles. Expert Opin Drug Deliv. 2005;2(2):205–18.

    CAS  PubMed  Google Scholar 

  69. Saltzman WM, Radomsky ML, Whaley KJ, Cone RA. Antibody diffusion in human cervical mucus. Biophys J. 1994;66(2 Pt 1):508–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Corthesy B, Kraehenbuhl JP. Antibody-mediated protection of mucosal surfaces. Curr Top Microbiol Immunol. 1999;236:93–111.

    CAS  PubMed  Google Scholar 

  71. Larhed AW, Artursson P, Grasjo J, Bjork E. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci. 1997;86(6):660–5.

    CAS  PubMed  Google Scholar 

  72. Matthes I, Nimmerfall F, Vonderscher J, Sucker H. Mucus models for investigation of intestinal absorption mechanisms. 4. Comparison of mucus models with absorption models in vivo and in situ for prediction of intestinal drug absorption. Pharmazie. 1992;47(10):787–91.

    CAS  PubMed  Google Scholar 

  73. Kas HS. Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul. 1997;14(6):689–711.

    Google Scholar 

  74. Dawson M, Wirtz D, Hanes J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem. 2003;278(50):50393–401.

    CAS  PubMed  Google Scholar 

  75. Thornton DJ, Sheehan JK. From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc. 2004;1(1):54–61.

    Google Scholar 

  76. Wolf DP, Blasco L, Khan MA, Litt M. Human cervical mucus. I. Rheologic characteristics. Fertil Steril. 1977;28(1):41–6.

    CAS  PubMed  Google Scholar 

  77. Boucher RC, Stutts MJ, Bromberg PA, Gatzy JT. Regional differences in airway surface liquid composition. J Appl Physiol. 1981;50(3):613–20.

    CAS  PubMed  Google Scholar 

  78. Girod S, Galabert C, Lecuire A, Zahm JM, Puchelle E. Phospholipid composition and surface-active properties of tracheobronchial secretions from patients with cystic fibrosis and chronic obstructive pulmonary diseases. Pediatr Pulmonol. 1992;13(1):22–7.

    CAS  PubMed  Google Scholar 

  79. Yeates DB, Besseris GJ, Wong LB. Physicochemical properties of mucus and its propulsion. In: Crystal RG, et al. editors. The lung: scientific foundations. Philadelphia: Lippincott-Raven; 1997. pp. 487–503.

    Google Scholar 

  80. Lamont JT. Mucus: the front line of intestinal mucosal defense. Ann N Y Acad Sci. 1992;664:190–201.

    Google Scholar 

  81. Lethem MI, James SL, Marriott C. The role of mucous glycoproteins in the rheologic properties of cystic fibrosis sputum. Am Rev Respir Dis. 1990;142(5):1053–8.

    CAS  PubMed  Google Scholar 

  82. Cone R. Mucus. In: Ogra PL, et al. editors. Mucosal immunology. San Diego: Academic; 1999. pp. 43–64.

    Google Scholar 

  83. App EM, Zayas JG, King M. Rheology of mucus and transepithelial potential difference: small airways versus trachea. Eur Respir J. 1993;6(1):67–75.

    Google Scholar 

  84. Rubin BK, Druce H, Ramirez OE, Palmer R. Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am J Respir Crit Care Med. 1997;155(6):2018–23.

    CAS  PubMed  Google Scholar 

  85. Rubin BK. Mucus structure and properties in cystic fibrosis. Paediatric Respir Rev. 2007;8(1):4–7.

    Google Scholar 

  86. Voynow JA, Gendler SJ, Rose MC. Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol. 2006;34(6):661–5.

    CAS  PubMed  Google Scholar 

  87. Hattori M, Majima Y, Ukai K, Sakakura Y. Effects of nasal allergen challenge on dynamic viscoelasticity of nasal mucus. Ann Otol Rhinol Laryngol. 1993;102(4 Pt 1):314–7.

    CAS  PubMed  Google Scholar 

  88. Allen A, Cunliffe WJ, Pearson JP, Sellers LA, Ward R. Studies on gastrointestinal mucus. Scand J Gastroenterol. 1984;Supplement 93:101–13.

    Google Scholar 

  89. Clift AF. Early studies on the rheology of cervical mucus. Am J Obstetr Gynecol. 1979;134(7):829–32.

    CAS  Google Scholar 

  90. Shahbazi MA, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab. 2013;14(1):28–56.

    CAS  Google Scholar 

  91. Wood KM, Stone GM, Peppas NA. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models. Acta Biomaterialia. 2010;6(1):48–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Meth. 2000;44(1):301–12.

    CAS  Google Scholar 

  93. Antunes F, Andrade F, Araujo F, Ferreira D, Sarmento B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Euro J Pharm Biopharm. 2013;83(3):427–35.

    Google Scholar 

  94. Wikman A, Karlsson J, Carlstedt I, Artursson P. A drug absorption model based on the mucus layer producing human intestinal goblet cell line HT29-H. Pharm Res. 1993;10(6):843–52.

    CAS  Google Scholar 

  95. Keely S, Rullay A, Wilson C, Carmichael A, Carrington S, Corfield A, Haddleton DM, Brayden DJ. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly (methacrylate) and N-trimethylated chitosan polymers. Pharm Res. 2005;22(1):38–49.

    CAS  PubMed  Google Scholar 

  96. Nollevaux G, Deville C, El Moualij B, Zorzi W, Deloyer P, Schneider YJ, Peulen O, Dandrifosse G. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29–5M21). BMC Cell Biol. 2006;7:20.

    PubMed Central  PubMed  Google Scholar 

  97. Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem. 2009;20(7):494–502.

    CAS  PubMed  Google Scholar 

  98. Gamboa JM, Leong KW. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. 2013;65(6):800–10.

    Google Scholar 

  99. Barthe L, Woodley JF, Kenworthy S, Houin G. An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. Eur J Drug Metab Pharmacokinet. 1998;23:313–23.

    CAS  PubMed  Google Scholar 

  100. Alam MA, Al-Jenoobi FI, Al-Mohizea AM. Everted gut sac model as a tool in pharmaceutical research: limitations and applications. J Pharm Pharmacol. 2012;64(3):326–36.

    CAS  PubMed  Google Scholar 

  101. Carreno-Gomez B, Duncan R. Everted rat intestinal sacs: a new model for the quantitation of P-glycoprotein mediated-efflux of anticancer agents. Anticancer Res. 2000;20(5A):3157–61.

    CAS  PubMed  Google Scholar 

  102. van de Kerkhof EG, de Graaf IA, Ungell AL, Groothuis GM. Induction of metabolism and transport in human intestine: validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro. Drug Metab Dispos. 2008;36(3):604–13.

    Google Scholar 

  103. van de Kerkhof EG, de Graaf IA, Groothuis GM. In vitro methods to study intestinal drug metab. Curr Drug Metabol. 2007;8(7):658–75.

    Google Scholar 

  104. Groothuis GM, de Graaf IA. Precision-cut intestinal slices as in vitro tool for studies on drug metab. Curr Drug Metabol. 2013;14(1):112–9.

    CAS  Google Scholar 

  105. van Midwoud PM, Merema MT, Verpoorte E, Groothuis GM. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip. 2010;10(20):2778–86.

    CAS  PubMed  Google Scholar 

  106. de Kanter R, Tuin A, van de Kerkhof E, Martignoni M, Draaisma AL, de Jager MH, de Graaf IA, Meijer DK, Groothuis GM. A new technique for preparing precision-cut slices from small intestine and colon for drug biotransformation studies. J Pharmacol Toxicol Meth. 2005;51(1):65–72.

    CAS  Google Scholar 

  107. Boddupalli BM, Mohammed ZN, Nath RA, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1(4):381–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–68.

    CAS  PubMed  Google Scholar 

  109. Derjaguin BV, Aleinikova IN, Toporov YP. On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Progr Surf Sci. 1994;45(1–4):119–23.

    Google Scholar 

  110. Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Gu JM, Robinson JR, Leung SH. Binding of acrylic polymers to mucin/epithelial surfaces: structure-property relationships. Crit Rev Ther Drug Carrier Syst. 1988;5(1):21–67.

    CAS  PubMed  Google Scholar 

  112. Dodou D, Breedveld P, Wieringa PA. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm. 2005;60(1):1–16.

    CAS  PubMed  Google Scholar 

  113. das Neves J, Amiji M, Sarmento B. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? Wiley Interdiscip Rev Nanomed Nanobiotechnol.. 2011;3(4):389–99.

    CAS  Google Scholar 

  114. das Neves J, Bahia MF, Amiji MM, Sarmento B. Mucoadhesiveicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv. 2011;8(8):1085–104.

    CAS  Google Scholar 

  115. Andrews GP, Donnelly L, Jones DS, Curran RM, Morrow RJ, Woolfson AD, Malcolm RK. Characterization of the rheological, mucoadhesive, and drug release properties of highly structured gel platforms for intravaginal drug delivery. Biomacromolecules. 2009;10(9):2427–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Gurny R, Meyer JM, Peppas NA. Bioadhesive intraoral release systems: design, testing and analysis. Biomaterials. 1984;5(6):336–40.

    CAS  PubMed  Google Scholar 

  117. Tiwari D, Goldman D, Sause R, Madan PL. Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations. AAPS PharmSci. 1999;1(3):E13.

    Google Scholar 

  118. McCarron PA, Woolfson AD, Donnelly RF, Andrews GP, Zawislak A, Price JH. Influence of plasticizer type and storage conditions on properties of poly(methyl vinyl ether-co-maleic anhydride) bioadhesive films. J Appl Polym Sci. 2004;91(3):1576–89.

    CAS  Google Scholar 

  119. Solomonidou D, Cremer K, Krumme M, Kreuter J. Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films. J Biomater Sci Polym Ed. 2001;12(11):1191–205.

    CAS  PubMed  Google Scholar 

  120. Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech. 2004;5(4):e67.

    PubMed  Google Scholar 

  121. Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–75.

    CAS  Google Scholar 

  122. Patel MM, Smart JD, Nevell TG, Ewen RJ, Eaton PJ, Tsibouklis J. Mucin/poly(acrylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules. 2003;4(5):1184–90.

    CAS  PubMed  Google Scholar 

  123. Nikonenko NA, Bushnak IA, Keddie JL. Spectroscopic ellipsometry of mucin layers on an amphiphilic diblock copolymer surface. Appl Spectrosc. 2009;63(8):889–98.

    CAS  PubMed  Google Scholar 

  124. Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles. Nanoscale. 2013;5(8):3103–11.

    Google Scholar 

  125. Sarmento B, das Neves J, editors. Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. 1st ed. Wiley; 2012.

    Google Scholar 

  126. Andrade F, Antunes F, Nascimento AV, da Silva SB, das Neves J, Ferreira D, Sarmento B. Chitosan formulations as carriers for therapeutic proteins. Curr Drug Discov Tech. 2011;8(3):157–72.

    CAS  Google Scholar 

  127. Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57(11):1569–82.

    PubMed  Google Scholar 

  128. Laffleur F, Bernkop-Schnurch A. Thiomers: promising platform for macromolecular drug delivery. Future Med Chem. 2012;4(17):2205–16.

    CAS  PubMed  Google Scholar 

  129. Guggi D, Marschutz MK, Bernkop-Schnurch A. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion. Int J Pharm. 2004;274(1–2):97–105.

    CAS  PubMed  Google Scholar 

  130. Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnurch A. Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate. Int J Pharm. 2008;347(1–2):79–85.

    CAS  PubMed  Google Scholar 

  131. Nema T, Jain A, Shilpi S, Gulbake A, Hurkat P, Jain SK. Insulin delivery through nasal route using thiolated microspheres. Drug Deliv. 2013;20(5):210–5.

    Google Scholar 

  132. Wang J, Tabata Y, Bi D, Morimoto K. Evaluation of gastric mucoadhesive properties of aminated gelatin microspheres. J Control Release. 2001;73(2–3):223–31.

    CAS  Google Scholar 

  133. Thanou M, Nihot MT, Jansen M, Verhoef JC, Junginger HE. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J Pharm Sci. 2001;90(1):38–46.

    CAS  PubMed  Google Scholar 

  134. Tripathi P, Beaussart A, Alsteens D, Dupres V, Claes I, von Ossowski I, de Vos WM, Palva A, Lebeer S, Vanderleyden J, Dufrene YF. Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG. ACS Nano. 2013;7(4):3685–97.

    Google Scholar 

  135. Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23–38.

    CAS  Google Scholar 

  136. Ivanov AE, Nilsson L, Galaev IY, Mattiasson B. Boronate-containing polymers form affinity complexes with mucin and enable tight and reversible occlusion of mucosal lumen by poly(vinyl alcohol) gel. Int J Pharm. 2008;358(1–2):36–43.

    CAS  PubMed  Google Scholar 

  137. Perioli L, Ambrogi V, Giovagnoli S, Blasi P, Mancini A, Ricci M, Rossi C. Influence of compression force on the behavior of mucoadhesive buccal tablets. AAPS PharmSciTech. 2008;9(1):274–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Shemer A, Amichai B, Trau H, Nathansohn N, Mizrahi B, Domb AJ. Efficacy of a mucoadhesive patch compared with an oral solution for treatment of aphthous stomatitis. Drugs R D. 2008;9(1):29–35.

    CAS  PubMed  Google Scholar 

  139. Donnelly RF, McCarron PA, Tunney MM, David Woolfson A. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B. 2007;86(1):59–69.

    CAS  PubMed  Google Scholar 

  140. Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist System. Diabetes Metab Res Rev. 2002;18(1):S38–42.

    CAS  PubMed  Google Scholar 

  141. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. McInnes FJ, O’Mahony B, Lindsay B, Band J, Wilson CG, Hodges LA, Stevens HN. Nasal residence of insulin containing lyophilised nasal insert formulations, using gamma scintigraphy. Eur J Pharm Sci. 2007;31(1):25–31.

    CAS  PubMed  Google Scholar 

  143. Coucke D, Schotsaert M, Libert C, Pringels E, Vervaet C, Foreman P, Saelens X, Remon JP. Spray-dried powders of starch and crosslinked poly(acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine. Vaccine. 2009;27(8):1279–86.

    CAS  PubMed  Google Scholar 

  144. Sensoy D, Cevher E, Sarici A, Yilmaz M, Ozdamar A, Bergisadi N. Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model. Eur J Pharm Biopharm. 2009;72(3):487–95.

    CAS  PubMed  Google Scholar 

  145. de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther. 2008;15(9):668–76.

    Google Scholar 

  146. Varum FJ, McConnell EL, Sousa JJ, Veiga F, Basit AW. Mucoadhesion and the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst. 2008;25(3):207–58.

    CAS  PubMed  Google Scholar 

  147. Ahmed IS, Ayres JW. Bioavailability of riboflavin from a gastric retention formulation. Int J Pharm. 2007;330(1–2):146–54.

    CAS  PubMed  Google Scholar 

  148. Rodes L, Coussa-Charley M, Marinescu D, Paul A, Fakhoury M, Abbasi S, Khan A, Tomaro-Duchesneau C, Prakash S. Design of a novel gut bacterial adhesion model for probiotic applications. Artif Cells Nanomed Biotechnol. 2013;41(2):116–24.

    CAS  PubMed  Google Scholar 

  149. Chen S, Cao Y, Ferguson LR, Shu Q, Garg S. Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. J Microencapsul. 2013;30(2):103–15.

    CAS  PubMed  Google Scholar 

  150. El-Leithy ES, Shaker DS, Ghorab MK, Abdel-Rashid RS. Evaluation of mucoadhesive hydrogels loaded with diclofenac sodium-chitosan microspheres for rectal administration. AAPS PharmSciTech. 2010;11(4):1695–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Bassi P, Kaur G. Innovations in bioadhesive vaginal drug delivery system. Expert Opin Ther Pat. 2012;22(9):1019–32.

    CAS  PubMed  Google Scholar 

  152. Pereira RR, Ribeiro Godoy JS, Stivalet Svidzinski TI, Bruschi ML. Preparation and characterization of mucoadhesive thermoresponsive systems containing propolis for the treatment of vulvovaginal candidiasis. J Pharm Sci. 2013;102(4):1222–34.

    CAS  PubMed  Google Scholar 

  153. Khanvilkar K, Donovan MD, Flanagan DR. Drug transfer through mucus. Adv Drug Deliv Rev. 2001;48(2–3):173–93.

    CAS  PubMed  Google Scholar 

  154. Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci. 1997;63:1481–92.

    CAS  Google Scholar 

  155. Norris DA, Puri N, Labib ME, Sinko PJ. Determining the absolute surface hydrophobicity of microparticulates using thin layer wicking. J Control Release. 1999;59(2):173–85.

    CAS  Google Scholar 

  156. Shen H, Hu Y, Saltzman WM. DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophys J. 2006;91(2):639–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Ribbeck K. Do viruses use vectors to penetrate mucus barriers? Biosci Hypotheses. 2009;2(6):329–62.

    PubMed Central  PubMed  Google Scholar 

  158. Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharmaceutics. 2013;10(5):1865–73.

    Google Scholar 

  159. Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A. 2009;106(46):19268–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Ferrari S, Kitson C, Farley R, Steel R, Marriott C, Parkins DA, Scarpa M, Wainwright B, Evans MJ, Colledge WH, Geddes DM, Alton EW. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther. 2001;8(18):1380–6.

    CAS  PubMed  Google Scholar 

  161. Mert O, Lai SK, Ensign L, Yang M, Wang YY, Wood J, Hanes J. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. J Control Release. 2012;157(3):455–60.

    CAS  Google Scholar 

  162. Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, Hanes J. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra179.

    Google Scholar 

  163. Suk JS, Boylan NJ, Trehan K, Tang BC, Schneider CS, Lin JM, Boyle MP, Zeitlin PL, Lai SK, Cooper MJ, Hanes J. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles. Mol Ther. 2011;19(11):1981–9.

    CAS  PubMed  Google Scholar 

  164. Boylan NJ, Suk JS, Lai SK, Jelinek R, Boyle MP, Cooper MJ, Hanes J. Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation. J Control Release. 2012;157(1):72–9.

    CAS  Google Scholar 

  165. Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–46.

    CAS  Google Scholar 

  166. Siegmund B. Targeted therapies in inflammatory bowel disease. Dig Dis. 2009;27(4):465–9.

    PubMed  Google Scholar 

  167. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369(9573):1627–40.

    CAS  PubMed  Google Scholar 

  168. Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? World J Gastroenterol. 2006;12(38):6102–8.

    PubMed  Google Scholar 

  169. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Zhou SY, Fleisher D, Pao LH, Li C, Winward B, Zimmermann EM. Intestinal metabolism and transport of 5-aminosalicylate. Drug Metab Dispos. 1999;27(4):479–85.

    CAS  PubMed  Google Scholar 

  171. Nakase H, Okazaki K, Tabata Y, Uose S, Ohana M, Uchida K, Matsushima Y, Kawanami C, Oshima C, Ikada Y, Chiba T. Development of an oral drug delivery system targeting immune-regulating cells in experimental inflammatory bowel disease: a new therapeutic strategy. J Pharmacol Exp Ther. 2000;292(1):15–21.

    CAS  PubMed  Google Scholar 

  172. Mladenovska K, Raicki RS, Janevik EI, Ristoski T, Pavlova MJ, Kavrakovski Z, Dodov MG, Goracinova K. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int J Pharm. 2007;342(1–2):124–36.

    CAS  PubMed  Google Scholar 

  173. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Design of pH-sensitive microspheres for the colonic delivery of the immunosuppressive drug tacrolimus. Eur J Pharm Biopharm. 2004;58(1):37–43.

    CAS  PubMed  Google Scholar 

  174. Lamprecht A, Ubrich N, Yamamoto H, Schafer U, Takeuchi H, Lehr CM, Maincent P, Kawashima. Design of rolipram-loaded nanoparticles: comparison of two preparation methods. J Control Release. 2001;71(3):297–306.

    CAS  Google Scholar 

  175. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. J Control Release. 2005;104(2):337–46.

    CAS  Google Scholar 

  176. Makhlof A, Tozuka Y, Takeuchi H. pH-sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72(1):1–8.

    CAS  PubMed  Google Scholar 

  177. Pertuit D, Moulari B, Betz T, Nadaradjane A, Neumann D, Ismaili L, Refouvelet B, Pellequer Y, Lamprecht A. 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease. J Control Release. 2007;123(3):211–8.

    CAS  Google Scholar 

  178. Jubeh TT, Nadler-Milbauer M, Barenholz Y, Rubinstein A. Local treatment of experimental colitis in the rat by negatively charged liposomes of catalase, TMN and SOD. J Drug Target. 2006;14(3):155–63.

    CAS  PubMed  Google Scholar 

  179. Tirosh B, Khatib N, Barenholz Y, Nissan A, Rubinstein A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharm. 2009;6(4):1083–91.

    CAS  PubMed  Google Scholar 

  180. Serpe L, Canaparo R, Daperno M, Sostegni R, Martinasso G, Muntoni E, Ippolito L, Vivenza N, Pera A, Eandi M, Gasco MR, Zara GP. Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model. Eur J Pharm Sci. 2010;39(5):428–36.

    CAS  PubMed  Google Scholar 

  181. Bhol KC, Schechter PJ. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig Dis Sci. 2007;52(10):2732–42.

    CAS  PubMed  Google Scholar 

  182. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Owen DA, Reid PE. Histochemical alterations of mucin in normal colon, inflammatory bowel disease and colonic adenocarcinoma. Histochem J. 1995;27(11):882–9.

    CAS  PubMed  Google Scholar 

  184. Corfield AP, Carroll D, Myerscough N, Probert CS. Mucins in the gastrointestinal tract in health and disease. Front Biosci. 2001;6:D1321–57.

    Google Scholar 

  185. Shirazi T, Longman RJ, Corfield AP, Probert CS. Mucins and inflammatory bowel disease. Postgrad Med J. 2000;76(898):473–8.

    CAS  PubMed  Google Scholar 

  186. Stremmel W, Braun A, Hanemann A, Ehehalt R, Autschbach F, Karner M. Delayed release phosphatidylcholine in chronic-active ulcerative colitis: a randomized, double-blinded, dose finding study. J Clin Gastroenterol. 2010;44(5):e101–7.

    CAS  Google Scholar 

  187. des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.

    PubMed  Google Scholar 

  188. Wang X, Shah AA, Campbell RB, Wan KT. Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery. Appl Phys Lett. 2010;97:26370.

    Google Scholar 

Download references

Acknowledgments

Hélder A. Santos acknowledges the Academy of Finland (projects numbers 252215 and 256394), the University of Helsinki, and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement number 310892 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélder A. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, H., Shahbazi, MA., Almeida, P., Santos, H. (2014). Mucus as a Barrier for Biopharmaceuticals and Drug Delivery Systems. In: das Neves, J., Sarmento, B. (eds) Mucosal Delivery of Biopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9524-6_3

Download citation

Publish with us

Policies and ethics