Skip to main content

Eligen® Technology for Oral Delivery of Proteins and Peptides

  • Chapter
  • First Online:
Mucosal Delivery of Biopharmaceuticals

Abstract

The Eligen® technology, an oral delivery technology, is based on the design and development of proprietary delivery carriers referred to as Emisphere delivery agents. The major limitations for noninvasive delivery such as rapid metabolism, chemical instability, and minimal absorption through gastrointestinal (GI) tract are overcome by the application of these delivery agents. Most of the delivery agents consist of amino acids having a molecular weight of 250–300 Da that are structurally diverse with different physiochemical properties. They facilitate the absorption of macromolecules through a transcellular mechanism. These agents have been evaluated for their ability to enhance the delivery of a wide range of therapeutic macromolecules. This review discusses the major challenges and strategies employed to overcome these difficulties. It also focuses on the application of novel proprietary delivery agents that have enabled the oral delivery of a large number of therapeutic proteins and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donovan MD, Flynn GL, Amidon GL. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm Res. 1990;7(8):863–8.

    Article  CAS  PubMed  Google Scholar 

  2. Aungst BJ. Absorption enhancers: applications and advances. AAPS J. 2012;14(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  3. Woodley JF. Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst. 1994;11(2–3):61–95.

    CAS  PubMed  Google Scholar 

  4. Lipka E, Crison J, Amidon GL. Transmembrane transport of peptide type compounds: prospects for oral delivery. J Control Release. 1996;39(2–3):121–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65(6):822–32.

    Article  CAS  PubMed  Google Scholar 

  6. He C, et al. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials. 2012;33(33):8569–78.

    Article  CAS  PubMed  Google Scholar 

  7. Griffin BT, O’Driscoll CM. Opportunities and challenges for oral delivery of hydrophobic versus hydrophilic peptide and protein-like drugs using lipid-based technologies. Ther Deliv. 2011;2(12):1633–53.

    Article  CAS  PubMed  Google Scholar 

  8. Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes—future perspectives. Int J Pharm. 2013;440(1):48–62.

    Article  CAS  PubMed  Google Scholar 

  9. Muller G. Oral delivery of protein drugs: driver for personalized medicine. Curr Issues Mol Biol. 2011;13(1):13–24.

    PubMed  Google Scholar 

  10. Werle M, Makhlof A, Takeuchi H. Oral protein delivery: a patent review of academic and industrial approaches. Recent Pat Drug Deliv Formul. 2009;3(2):94–104.

    Article  CAS  PubMed  Google Scholar 

  11. Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70(3):269–77.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011;153(2):106–16.

    Article  CAS  PubMed  Google Scholar 

  13. Malik DK, et al. Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv. 2007;4(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  14. Park K, Kwon IC, Park K. Oral protein delivery: current status and future prospect. React Funct Polym. 2011;71(3):280–7.

    Article  CAS  Google Scholar 

  15. Fasano A. Novel approaches for oral delivery of macromolecules. J Pharm Sci. 1998;87(11):1351–6.

    Article  CAS  PubMed  Google Scholar 

  16. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2(4):289–95.

    Article  CAS  PubMed  Google Scholar 

  17. Henry CM. Special delivery. Chem Eng News. 2000;78(38):49–65.

    Article  Google Scholar 

  18. Leone-Bay A, et al. Oral delivery of biologically active parathyroid hormone. Pharm Res. 2001;18(7):964–70.

    Article  CAS  PubMed  Google Scholar 

  19. Wu SJ, Robinson JR. Transport of human growth hormone across Caco-2 cells with novel delivery agents: evidence for P-glycoprotein involvement. J Control Release. 1999;62(1–2):171–7.

    Article  CAS  PubMed  Google Scholar 

  20. Leone-Bay A, et al. Compounds and compositions for delivering active agents, U.S. Patent, Editor. 2003, Emisphere Technologies Inc.: US.

    Google Scholar 

  21. Mlynek GM, Calvo LJ, Robinson JR. Carrier-enhanced human growth hormone absorption across isolated rabbit intestinal tissue. Int J Pharm. 2000;197(1–2):13–21.

    Article  CAS  PubMed  Google Scholar 

  22. Wu SJ, Robinson JR. Transcellular and lipophilic complex-enhanced intestinal absorption of human growth hormone. Pharm Res. 1999;16(8):1266–72.

    Article  CAS  PubMed  Google Scholar 

  23. Bagger YZ, et al. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis. Bone. 2005;37(3):425–30.

    Article  CAS  PubMed  Google Scholar 

  24. Buclin T, et al. Bioavailability and biological efficacy of a new oral formulation of salmon calcitonin in healthy volunteers. J Bone Miner Res. 2002;17(8):1478–85.

    Article  CAS  PubMed  Google Scholar 

  25. Hamdy RC, Daley DN. Oral calcitonin. Int J Womens Health. 2012;4:471–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Karsdal MA, et al. The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthr Cartilage. 2010;18(2):150–9.

    Article  CAS  PubMed  Google Scholar 

  27. Karsdal MA, et al. The effects of oral calcitonin on bone collagen maturation: implications for bone turnover and quality. Osteoporos Int. 2008;19(9):1355–61.

    Article  CAS  PubMed  Google Scholar 

  28. Karsdal MA, et al. Investigation of the diurnal variation in bone resorption for optimal drug delivery and efficacy in osteoporosis with oral calcitonin. BMC Clin Pharmacol. 2008;8:12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Karsdal MA, et al. Optimizing bioavailability of oral administration of small peptides through pharmacokinetic and pharmacodynamic parameters: the effect of water and timing of meal intake on oral delivery of Salmon calcitonin. BMC Clin Pharmacol. 2008;8:5.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tanko LB, et al. Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover. J Bone Miner Res. 2004;19(9):1531–8.

    Article  CAS  PubMed  Google Scholar 

  31. Baughman RA, et al. Oral delivery of anticoagulant doses of heparin. A randomized, double-blind, controlled study in humans. Circulation. 1998;98(16):1610–5.

    Article  CAS  PubMed  Google Scholar 

  32. Brayden D, et al. Heparin absorption across the intestine: effects of sodium N-[8-(2-hydroxybenzoyl)amino]caprylate in rat in situ intestinal instillations and in Caco-2 monolayers. Pharm Res. 1997;14(12):1772–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gonze MD, et al. Orally administered heparin for preventing deep venous thrombosis. Am J Surg. 1998;176(2):176–8.

    Article  CAS  PubMed  Google Scholar 

  34. Malkov D, et al. Pathway of oral absorption of heparin with sodium N-[8-(2-hydroxybenzoyl)amino] caprylate. Pharm Res. 2002;19(8):1180–4.

    Article  CAS  PubMed  Google Scholar 

  35. Rivera TM, et al. Oral delivery of heparin in combination with sodium N-[8-(2-hydroxybenzoyl)amino]caprylate: pharmacological considerations. Pharm Res. 1997;14(12):1830–4.

    Article  CAS  PubMed  Google Scholar 

  36. Kidron M, et al. A novel per-oral insulin formulation: proof of concept study in non-diabetic subjects. Diabet Med. 2004;21(4):354–7.

    Article  CAS  PubMed  Google Scholar 

  37. Abbas R, et al. Oral insulin: pharmacokinetics and pharmacodynamics of human insulin following oral administration of an insulin/delivery agent capsule in healthy volunteers. Diabetes. 2002;51:A48.

    Google Scholar 

  38. Hoffman A, Qadri B. Eligen insulin—a system for the oral delivery of insulin for diabetes. IDrugs. 2008;11(6):433–41.

    CAS  PubMed  Google Scholar 

  39. Kapitza C, et al. Oral insulin: a comparison with subcutaneous regular human insulin in patients with type 2 diabetes. Diabetes Care. 2010;33(6):1288–90.

    Article  CAS  PubMed  Google Scholar 

  40. Malkov D, et al. Oral delivery of insulin with the eligen technology: mechanistic studies. Curr Drug Deliv. 2005;2(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  41. Leone-Bay A, et al. 4-[4-[(2-Hydroxybenzoyl)amino]phenyl]butyric acid as a novel oral delivery agent for recombinant human growth hormone. J Med Chem. 1996;39(13):2571–8.

    Article  CAS  PubMed  Google Scholar 

  42. Castelli MC, et al. SNAC co-formulation produces significant enhancement of oral vitamin B12 bioavailability in rats. FASEB J. 2008;22:795.

    Google Scholar 

  43. Milstein SJ, et al. Partially unfolded proteins efficiently penetrate cell membranes–implications for oral drug delivery. J Control Release. 1998;53(1–3):259–67.

    Article  CAS  PubMed  Google Scholar 

  44. Alani AW, Robinson JR. Mechanistic understanding of oral drug absorption enhancement of cromolyn sodium by an amino acid derivative. Pharm Res. 2008;25(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  45. Azria M, Copp DH, Zanelli JM. 25 years of salmon calcitonin: from synthesis to therapeutic use. Calcif Tissue Int. 1995;57(6):405–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lee YH, Sinko PJ. Oral delivery of salmon calcitonin. Adv Drug Deliv Rev. 2000;42(3):225–38.

    Article  CAS  PubMed  Google Scholar 

  47. Gschwind HP, et al. Metabolism and disposition of the oral absorption enhancer 14C-radiolabeled 8-(N-2-hydroxy-5-chlorobenzoyl)-amino-caprylic acid (5-CNAC) in healthy postmenopausal women and supplementary investigations in vitro. Eur J Pharm Sci. 2012;47(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  48. Bagger YZ, et al. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: A new potential treatment of osteoarthritis. Bone. 2005;37(3):425–30.

    Article  CAS  PubMed  Google Scholar 

  49. Dinh S, Liu P, Wong V. Gastric absorption of oral insulin in rats, in Annual Meeting of American Association of Pharmaceutical Scientists. Toronto: American Association of Pharmaceutical Scientists; 2002.

    Google Scholar 

  50. Malkov D, Wang H-Z, Angelo R. Mechanism of oral absorption of insulin with Emisphere drug delivery agents, in The 29th Annual Meeting of Controlled Release Society. Seoul: Controlled Release Society; 2002.

    Google Scholar 

  51. Arbit E, et al. Oral insulin as first-line therapy in type 2 diabetes: a randomized-controlled pilot study. Diabetologia. 2004;47:A5.

    Google Scholar 

  52. Hirsh J, et al. Guide to anticoagulant therapy: Heparin a statement for healthcare professionals from the American Heart Association. Circulation. 2001;103(24):2994–3018.

    Article  CAS  PubMed  Google Scholar 

  53. Leone-Bay A, Paton DR, Weidner JJ. The development of delivery agents that facilitate the oral absorption of macromolecular drugs. Med Res Rev. 2000;20(2):169–86.

    Article  CAS  PubMed  Google Scholar 

  54. Leone-Bay A, et al. Oral delivery of rhGH: preliminary mechanistic considerations. Drug News Perspect. 1996;9(10):586–91.

    CAS  Google Scholar 

  55. Castelli MC, et al. Comparing the efficacy and tolerability of a new daily oral vitamin B-12 formulation and intermittent intramuscular vitamin B-12 in normalizing low cobalamin levels: a randomized, open-label, parallel-group study. Clin Ther. 2011;33(3):358–71.

    Article  CAS  PubMed  Google Scholar 

  56. Molina E, et al. The effect of parathyroid hormone (hPTH 1–34) on oxytocin-induced contractions of pregnant human myometrium “in vitro”. FASEB J. 1996;10(3):3800.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Prakash Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Victor, S., Paul, W., Sharma, C. (2014). Eligen® Technology for Oral Delivery of Proteins and Peptides. In: das Neves, J., Sarmento, B. (eds) Mucosal Delivery of Biopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9524-6_18

Download citation

Publish with us

Policies and ethics