Skip to main content

Vaccine Delivery Systems for Veterinary Immunization

  • Chapter
  • First Online:
Mucosal Delivery of Biopharmaceuticals

Abstract

Animal health includes different areas such as companion animals, livestock and also, animal-to-human transmission from both domestic animals and wildlife. Diversity management has led to different approaches to the development of veterinary vaccines. This chapter exposes an update of vaccine achievements, focusing on nonliving subunit vaccine strategies and the forthcoming tactics surrounding this approach. Particularly, it explores several aspects of the employment of immunoadjuvants, focusing on micro- or nanoparticulate delivery systems. Thus, we will analyze these delivery systems and the elicited immune responses considering particular veterinary vaccine requirements. Experimental vaccination against brucellosis will be used here as a model. In conclusion, the use of appropriate antigens together with the right adjuvants may offer safety, efficacy, and more convenient delivery methods for animal vaccination campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shryock TR. The future of anti-infective products in animal health. Nat Rev Microbiol. 2004;2(5):425–30.

    CAS  PubMed  Google Scholar 

  2. Hopkins DR. The greatest killer: smallpox in history. Chicago: University of Chicago Press; 2002.

    Google Scholar 

  3. Christie RJ, Findley DJ, Dunfee M, Hansen RD, Olsen SC, Grainger DW. Photopolymerized hydrogel carriers for live vaccine ballistic delivery. Vaccine. 2006;24(9):1462–9.

    CAS  PubMed  Google Scholar 

  4. Olsen SC, Christie RJ, Grainger DW, Stoffregen WS. Immunologic responses of bison to vaccination with Brucella abortus strain RB51: comparison of parenteral to ballistic delivery via compressed pellets or photopolymerized hydrogels. Vaccine. 2006;24(9):1346–53.

    CAS  PubMed  Google Scholar 

  5. Ramon G. Sur l’augmentation anormale de l’antitoxine chez les chevaux producteurs de serum antidiphterique. Bull Soc Centr Med Vet. 1925;101:227–34.

    Google Scholar 

  6. Ramon G. Procédures pour accroître la production des antitoxines. Ann Inst Pasteur. 1926;40:1–10.

    Google Scholar 

  7. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(1):1–13.

    CAS  PubMed  Google Scholar 

  8. Li H, Willingham SB, Ting JP, Re F. Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol. 2008;181(1):17–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol. 1995;6:229–48.

    CAS  PubMed  Google Scholar 

  10. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21(4):317–37.

    CAS  PubMed  Google Scholar 

  11. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    CAS  PubMed  Google Scholar 

  12. Tamayo I, Irache JM, Mansilla C, Ochoa-Repáraz J, Lasarte JJ, Gamazo C. Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin Vaccine Immunol. 2010;17(9):1356–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Camacho AI, Da Costa Martins R, Tamayo I, de Souza J, Lasarte JJ, Mansilla C, Esparza I, Irache JM, Gamazo C. Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine. 2011;29(41):7130–5.

    CAS  PubMed  Google Scholar 

  14. Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release. 2001;76(1–2):59–71.

    CAS  PubMed  Google Scholar 

  15. Audran R, Peter K, Dannull J, Men Y, Scandella E, Groettrup M, Gander B, Corradin G. Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro. Vaccine. 2003;21(11–12):1250–5.

    CAS  PubMed  Google Scholar 

  16. De Koker S, Lambrecht BN, Willart MA, van Kooyk Y, Grooten J, Vervaet C, Remon JP, De Geest BG. Designing polymeric particles for antigen delivery. Chem Soc Rev. 2011;40(1):320–39.

    CAS  PubMed  Google Scholar 

  17. De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today. 2011;16(13–14):569–82.

    CAS  PubMed  Google Scholar 

  18. Jain S, O’Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines. 2011;10(12):1731–42.

    CAS  PubMed  Google Scholar 

  19. Burgdorf S, Kurts C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol. 2008;20(1):89–95.

    CAS  PubMed  Google Scholar 

  20. Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 2006;117(1):78–88.

    CAS  PubMed  Google Scholar 

  21. Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev. 2010;62(4–5):394–407.

    CAS  PubMed  Google Scholar 

  22. Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996;272(5258):54–60.

    CAS  PubMed  Google Scholar 

  23. Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res. 2006;37(3):511–39.

    CAS  PubMed  Google Scholar 

  24. Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, Fahmy TM. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012;33(19):4957–64.

    CAS  PubMed  Google Scholar 

  25. Malyala P, Chesko J, Ugozzoli M, Goodsell A, Zhou F, Vajdy M, O’Hagan DT, Singh M. The potency of the adjuvant, CpG oligos, is enhanced by encapsulation in PLG microparticles. J Pharm Sci. 2008;97(3):1155–64.

    CAS  PubMed  Google Scholar 

  26. Bal SM, Slutter B, Verheul R, Bouwstra JA, Jiskoot W. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci. 2012;45(4):475–81.

    CAS  PubMed  Google Scholar 

  27. Afrin F, Rajesh R, Anam K, Gopinath M, Pal S, Ali N. Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infect Immun. 2002;70(12):6697–706.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hall MA, Stroop SD, Hu MC, Walls MA, Reddish MA, Burt DS, Lowell GH, Dale JB. Intranasal immunization with multivalent group A streptococcal vaccines protects mice against intranasal challenge infections. Infect Immun. 2004;72(5):2507–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Prasad S, Cody V, Saucier-Sawyer JK, Fadel TR, Edelson RL, Birchall MA, Hanlon DJ. Optimization of stability, encapsulation, release, and cross-priming of tumor antigen-containing PLGA nanoparticles. Pharm Res. 2012;29(9):2565–77.

    CAS  PubMed  Google Scholar 

  30. des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.

    CAS  PubMed  Google Scholar 

  31. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125(3):193–209.

    CAS  PubMed  Google Scholar 

  32. Katare YK, Muthukumaran T, Panda AK. Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm. 2005;301(1–2):149–60.

    CAS  PubMed  Google Scholar 

  33. Wendorf J, Singh M, Chesko J, Kazzaz J, Soewanan E, Ugozzoli M, O’Hagan D. A practical approach to the use of nanoparticles for vaccine delivery. J Pharm Sci. 2006;95(12):2738–50.

    CAS  PubMed  Google Scholar 

  34. Scheerlinck JP, Greenwood DL. Particulate delivery systems for animal vaccines. Methods. 2006;40(1):118–24.

    CAS  PubMed  Google Scholar 

  35. Moreno E, Cloeckaert A, Moriyon I. Brucella evolution and taxonomy. Vet Microbiol. 2002;90(1–4):209–27.

    CAS  PubMed  Google Scholar 

  36. Garin-Bastuji B, Blasco JM, Grayon M, Verger JM. Brucella melitensis infection in sheep: present and future. Vet Res. 1998;29(3–4):255–74.

    CAS  PubMed  Google Scholar 

  37. Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonosis. Vet Microbiol. 2010;140(3–4):392–8.

    PubMed  Google Scholar 

  38. Young EJ. An overview of human brucellosis. Clin Infect Dis. 1995;21(2):283–9, quiz 290.

    CAS  PubMed  Google Scholar 

  39. Doganay GD, Doganay M. Brucella as a potential agent of bioterrorism. Recent Pat Antiinfect Drug Discov. 2013;8(1):27–33.

    CAS  PubMed  Google Scholar 

  40. Zúñiga Estrada A, Mota de la Garza L, Sánchez Mendoza M, Santos López EM, Filardo Kerstupp S, López Merino A. Survival of Brucella abortus in milk fermented with a yoghurt starter culture. Rev Latinoam Microbiol. 2005;47(3–4):88–91.

    PubMed  Google Scholar 

  41. Magwedere K, Bishi A, Tjipura-Zaire G, Eberle G, Hemberger Y, Hoffman LC, Dziva F. Brucellae through the food chain: the role of sheep, goats and springbok (Antidorcus marsupialis) as sources of human infections in Namibia. J S Afr Vet Assoc. 2011;82(4):205–12.

    CAS  PubMed  Google Scholar 

  42. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006;6(2):91–9.

    PubMed  Google Scholar 

  43. Donev DM. Brucellosis as priority public health challenge in South Eastern European countries. Croat Med J. 2010;51(4):283–4.

    PubMed Central  PubMed  Google Scholar 

  44. Buzgan T, Karahocagil MK, Irmak H, Baran AI, Karsen H, Evirgen O, Akdeniz H. Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature. Int J Infect Dis. 2010;14(6):e469–78.

    PubMed  Google Scholar 

  45. Megid J, Mathias LA, Robles CA. Clinical manifestations of brucellosis in domestic animals and humans. Open Vet Sci J. 2010;4:119–26.

    Google Scholar 

  46. Andriopoulos P, Tsironi M, Deftereos S, Aessopos A, Assimakopoulos G. Acute brucellosis: presentation, diagnosis, and treatment of 144 cases. Int J Infect Dis. 2007;11(1):52–7.

    PubMed  Google Scholar 

  47. Muñoz PM, de Miguel MJ, Grilló MJ, Marín CM, Barberán M, Blasco JM. Immunopathological responses and kinetics of Brucella melitensis Rev 1 infection after subcutaneous or conjunctival vaccination in rams. Vaccine. 2008;26(21):2562–9.

    PubMed  Google Scholar 

  48. Hoover DL, Nikolich MP, Izadjoo MJ, Borschel RH, Bhattacharjee AK. Development of new Brucella vaccines by molecular methods. In: Lopez-Goi I, Moriyón I, editors. Brucella: molecular and cellular biology. Norfolk: Horizon Bioscience; 2004. pp. 362–92.

    Google Scholar 

  49. Blasco JM. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev Vet Med. 1997;31(3–4):275–83.

    CAS  PubMed  Google Scholar 

  50. Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, present and future. Vet Microbiol. 2002;90(1–4):479–96.

    CAS  PubMed  Google Scholar 

  51. Cutler S, Whatmore A. Progress in understanding brucellosis. Vet Rec. 2003;153(21):641–2.

    PubMed  Google Scholar 

  52. Moriyón I, Grillo MJ, Monreal D, Gonzalez D, Marin C, Lopez-Goni I, Mainar-Jaime RC, Moreno E, Blasco JM. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res. 2004;35(1):1–38.

    PubMed  Google Scholar 

  53. Corbell MJ. Brucellosis in humans and animals. Geneva: WHO Press; 2006.

    Google Scholar 

  54. Bascoul S, Cannat A, Huguet MF, Serre A. Studies on the immune protection to murine experimental brucellosis conferred by Brucella fractions. I. Positive role of immune serum. Immunology. 1978;35(2):213–21.

    CAS  PubMed  Google Scholar 

  55. Escande A, Serre A. IgE anti-brucella antibodies in the course of human brucellosis and after specific vaccination. Int Arch Allergy Appl Immunol. 1982;68(2):172–5.

    CAS  PubMed  Google Scholar 

  56. Van De Verg LL, Hartman AB, Bhattacharjee AK, Tall BD, Yuan L, Sasala K, Hadfield TL, Zollinger WD, Hoover DL, Warren RL. Outer membrane protein of Neisseria meningitidis as a mucosal adjuvant for lipopolysaccharide of Brucella melitensis in mouse and guinea pig intranasal immunization models. Infect Immun. 1996;64(12):5263–8.

    Google Scholar 

  57. He Y, Xiang Z. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN. Immunome Res. 2010;6 Suppl 1:S5.

    PubMed  Google Scholar 

  58. Da Costa Martins R, Irache JM, Blasco JM, Munoz MP, Marin CM, Jesus Grillo M, Jesus De Miguel M, Barberan M, Gamazo C. Evaluation of particulate acellular vaccines against Brucella ovis infection in rams. Vaccine. 2010;28(17):3038–46.

    Google Scholar 

  59. Edmonds MD, Cloeckaert A, Elzer PH. Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet Microbiol. 2002;88(3):205–21.

    CAS  PubMed  Google Scholar 

  60. Lopez-Goni I, Guzman-Verri C, Manterola L, Sola-Landa A, Moriyon I, Moreno E. Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet Microbiol. 2002;90(1–4):329–39.

    CAS  PubMed  Google Scholar 

  61. Estein SM, Cassataro J, Vizcaino N, Zygmunt MS, Cloeckaert A, Bowden RA. The recombinant Omp31 from Brucella melitensis alone or associated with rough lipopolysaccharide induces protection against Brucella ovis infection in BALB/c mice. Microbes Infect. 2003;5(2):85–93.

    CAS  PubMed  Google Scholar 

  62. Lapaque N, Moriyon I, Moreno E, Gorvel JP. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol. 2005;8(1):60–6.

    CAS  PubMed  Google Scholar 

  63. Gamazo C, Winter AJ, Moriyon I, Riezu-Boj JI, Blasco JM, Diaz R. Comparative analyses of proteins extracted by hot saline or released spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infect Immun. 1989;57(5):1419–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Vizcaíno N, Cloeckaert A, Zygmunt MS, Dubray G. Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. Infect Immun. 1996;64(9):3744–51.

    PubMed Central  PubMed  Google Scholar 

  65. Tibor A, Decelle B, Letesson JJ. Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect Immun. 1999;67(9):4960–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Riezu-Boj JI, Moriyón I, Blasco JM, Gamazo C, Díaz R. Antibody response to Brucella ovis outer membrane proteins in ovine. Infect Immun. 1990;58(2):489–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Blasco JM, Gamazo C, Winter AJ, Jimenez de Bagues MP, Marin C, Barberan M, Moriyon I, Alonso-Urmeneta B, Diaz R. Evaluation of whole cell and subcellular vaccines against Brucella ovis in rams. Vet Immunol Immunopathol. 1993;37(3–4):257–70.

    CAS  PubMed  Google Scholar 

  68. Mallapragada SK, Narasimhan B. Immunomodulatory biomaterials. Int J Pharm. 2008;364(2):265–71.

    CAS  PubMed  Google Scholar 

  69. Ungaro F, d’Angelo I, Miro A, La Rotonda MI, Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol. 2012;64(9):1217–35.

    CAS  PubMed  Google Scholar 

  70. Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev. 2009;61(2):140–57.

    CAS  PubMed  Google Scholar 

  71. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22.

    CAS  PubMed  Google Scholar 

  72. Jameela SR, Suma N, Misra A, Raghuvanshi R, Ganga S, Jayakrishnan A. Poly(epsilon-caprolactone) microspheres as a vaccine carrier. Curr Sci. 1996;70(7):669–71.

    CAS  Google Scholar 

  73. Irache JM, Esparza I, Gamazo C, Agueros M, Espuelas S. Nanomedicine: novel approaches in human and veterinary therapeutics. Vet Parasitol. 2011;180(1–2):47–71.

    PubMed  Google Scholar 

  74. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.

    CAS  PubMed  Google Scholar 

  75. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.

    CAS  PubMed  Google Scholar 

  76. Florindo HF, Pandit S, Lacerda L, Goncalves LM, Alpar HO, Almeida AJ. The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-epsilon-caprolactone-based nanoparticles. Biomaterials. 2009;30(5):879–91.

    CAS  PubMed  Google Scholar 

  77. Ogawa Y, Yamamoto M, Okada H, Yashiki T, Shimamoto T. A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid. Chem Pharm Bull (Tokyo). 1988;36(3):1095–103.

    CAS  Google Scholar 

  78. Murillo M, Grilló MJ, Reñé J, Marín CM, Barberán M, Goñi MM, Blasco JM, Irache JM, Gamazo C. A Brucella ovis antigenic complex bearing poly-epsilon-caprolactone microparticles confer protection against experimental brucellosis in mice. Vaccine. 2001;19(30):4099–106.

    CAS  PubMed  Google Scholar 

  79. Xu FH, Zhang Q. Recent advances in the preparation progress of protein/peptide drug loaded PLA/PLGA microspheres. Yao Xue Xue Bao. 2007;42(1):1–7.

    CAS  PubMed  Google Scholar 

  80. Murillo M, Gamazo C, Irache JM, Goñi MM. Polyester microparticles as a vaccine delivery system for brucellosis: influence of the polymer on release, phagocytosis and toxicity. J Drug Target. 2002;10(3):211–9.

    CAS  PubMed  Google Scholar 

  81. del Barrio GG, Novo FJ, Irache JM. Loading of plasmid DNA into PLGA microparticles using TROMS (Total Recirculation One-Machine System): evaluation of its integrity and controlled release properties. J Control Release. 2003;86:123–30.

    PubMed  Google Scholar 

  82. Estevan M, Gamazo C, Grillo MJ, Del Barrio GG, Blasco JM, Irache JM. Experiments on a sub-unit vaccine encapsulated in microparticles and its efficacy against Brucella melitensis in mice. Vaccine. 2006;24(19):4179–87.

    CAS  PubMed  Google Scholar 

  83. McNeela EA, Lavelle EC. Recent advances in microparticle and nanoparticle delivery vehicles for mucosal vaccination. Curr Top Microbiol Immunol. 2012;354:75–99.

    CAS  PubMed  Google Scholar 

  84. Estevan M, Gamazo C, Gonzalez-Gaitano G, Irache JM. Optimization of the entrapment of bacterial cell envelope extracts into microparticles for vaccine delivery. J Microencapsul. 2006;23(2):169–81.

    CAS  PubMed  Google Scholar 

  85. Murillo M, Goñi MM, Irache JM, Arangoa MA, Blasco JM, Gamazo C. Modulation of the cellular immune response after oral or subcutaneous immunization with microparticles containing Brucella ovis antigens. J Control Release. 2002;85(1–3):237–46.

    CAS  PubMed  Google Scholar 

  86. Sah H. Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation. J Control Release. 1999;58(2):143–51.

    CAS  PubMed  Google Scholar 

  87. Varca GH, Andréo-Filho N, Lopes PS, Ferraz HG. Cyclodextrins: an overview of the complexation of pharmaceutical proteins. Curr Protein Pept Sci. 2010;11(4):255–63.

    CAS  PubMed  Google Scholar 

  88. Serno T, Geidobler R, Winter G. Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev. 2011;63(13):1086–106.

    CAS  PubMed  Google Scholar 

  89. Duchêne D, Ponchel G, Wouessidjewe D. Cyclodextrins in targeting. Application to nanoparticles. Adv Drug Deliv Rev. 1999;36(1):29–40.

    PubMed  Google Scholar 

  90. Calleja P, Huarte J, Agueros M, Ruiz-Gaton L, Espuelas S, Irache JM. Molecular buckets: cyclodextrins for oral cancer therapy. Ther Deliv. 2012;3(1):43–57.

    CAS  PubMed  Google Scholar 

  91. Duchêne D, Bochot A, Yu SC, Pepin C, Seiller M. Cyclodextrins and emulsions. Int J Pharm. 2003;266(1–2):85–90.

    PubMed  Google Scholar 

  92. Murillo M, Irache JM, Estevan M, Goñi MM, Blasco JM, Gamazo C. Influence of the co-encapsulation of different excipients on the properties of polyester microparticle-based vaccine against brucellosis. Int J Pharm. 2004;271(1–2):125–35.

    CAS  PubMed  Google Scholar 

  93. Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: role of physicochemical properties of particulate carriers–liposomes and microspheres–on the phagocytosis by macrophages. J Control Release. 2002;79(1–3):29–40.

    CAS  PubMed  Google Scholar 

  94. Yoshida M, Babensee JE. Molecular aspects of microparticle phagocytosis by dendritic cells. J Biomater Sci Polym Ed. 2006;17(8):893–907.

    CAS  PubMed  Google Scholar 

  95. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Artursson P, Arro E, Edman P, Ericsson JL, Sjoholm I. Biodegradable microspheres. V: Stimulation of macrophages with microparticles made of various polysaccharides. J Pharm Sci. 1987;76(2):127–33.

    CAS  PubMed  Google Scholar 

  97. Yadav AB, Muttil P, Singh AK, Verma RK, Mohan M, Agrawal AK, Verma AS, Sinha SK, Misra A. Microparticles induce variable levels of activation in macrophages infected with Mycobacterium tuberculosis. Tuberculosis (Edinb). 2010;90(3):188–96.

    CAS  Google Scholar 

  98. Lopez-Urrutia L, Alonso A, Nieto ML, Bayon Y, Orduna A, Sanchez Crespo M. Lipopolysaccharides of Brucella abortus and Brucella melitensis induce nitric oxide synthesis in rat peritoneal macrophages. Infect Immun. 2000;68(3):1740–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Chakravortty D, Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 2003;5(7):621–7.

    CAS  PubMed  Google Scholar 

  100. Chen H. Recent advances in mucosal vaccine development. J Control Release. 2000;67(2–3):117–28.

    CAS  PubMed  Google Scholar 

  101. Dietrich G, Griot-Wenk M, Metcalfe IC, Lang AB, Viret JF. Experience with registered mucosal vaccines. Vaccine. 2003;21(7–8):678–83.

    CAS  PubMed  Google Scholar 

  102. Kaul D, Ogra PL. Mucosal responses to parenteral and mucosal vaccines. Dev Biol Stand. 1998;95:141–6.

    CAS  PubMed  Google Scholar 

  103. Croitoru K, Bienenstock J. Characteristics and functions of mucosa-associated lymphoid tissue. In: Ogra PL, et al., editors. Handbook of mucosal immunology. San Diego: Academic Press; 1994. pp. 141–9.

    Google Scholar 

  104. Mestecky J, Michalek SM, Moldoveanu Z, Russell MW. Routes of immunization and antigen delivery systems for optimal mucosal immune responses in humans. Behring Inst Mitt. 1997;98:33–43.

    CAS  PubMed  Google Scholar 

  105. Cesta MF. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol. 2006;34(5):599–608.

    PubMed  Google Scholar 

  106. Nugent J, Po AL, Scott EM. Design and delivery of non-parenteral vaccines. J Clin Pharm Ther. 1998;23(4):257–85.

    CAS  PubMed  Google Scholar 

  107. Corthésy B. Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J Immunol. 2007;178(1):27–32.

    PubMed  Google Scholar 

  108. Salman HH, Gamazo C, Campanero MA, Irache JM. Salmonella-like bioadhesive nanoparticles. J Control Release. 2005;106(1–2):1–13.

    CAS  PubMed  Google Scholar 

  109. Estevan M, Irache JM, Grillo MJ, Blasco JM, Gamazo C. Encapsulation of antigenic extracts of Salmonella enterica serovar. Abortusovis into polymeric systems and efficacy as vaccines in mice. Vet Microbiol. 2006;118(1–2):124–32.

    CAS  PubMed  Google Scholar 

  110. Salman HH, Gamazo C, Campanero MA, Irache JM. Bioadhesive mannosylated nanoparticles for oral drug delivery. J Nanosci Nanotechnol. 2006;6(9–10):3203–9.

    CAS  PubMed  Google Scholar 

  111. Almeida AJ, Alpar HO. Nasal delivery of vaccines. J Drug Target. 1996;3(6)455–67.

    CAS  PubMed  Google Scholar 

  112. Gomez S, Gamazo C, Roman BS, Ferrer M, Sanz ML, Irache JM. Gantrez AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine. 2007;25(29):5263–71.

    CAS  PubMed  Google Scholar 

  113. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513–25.

    CAS  PubMed  Google Scholar 

  114. Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv. 2008;5(6):703–24.

    CAS  PubMed  Google Scholar 

  115. Irache JM, Salman HH, Gomez S, Espuelas S, Gamazo C. Poly(anhydride) nanoparticles as adjuvants for mucosal vaccination. Front Biosci (Schol Ed). 2010;2:876–90.

    Google Scholar 

  116. Frey A, Neutra MR. Targeting of mucosal vaccines to Peyer’s patch M cells. Behring Inst Mitt. 1997;98:376–89.

    CAS  PubMed  Google Scholar 

  117. Salman HH, Gamazo C, Agueros M, Irache JM. Bioadhesive capacity and immunoadjuvant properties of thiamine-coated nanoparticles. Vaccine. 2007;25(48):8123–32.

    CAS  PubMed  Google Scholar 

  118. Salman HH, Gamazo C, de Smidt PC, Russell-Jones G, Irache JM. Evaluation of bioadhesive capacity and immunoadjuvant properties of vitamin B(12)-Gantrez nanoparticles. Pharm Res. 2008;25(12):2859–68.

    CAS  PubMed  Google Scholar 

  119. Rieger J, Freichels H, Imberty A, Putaux JL, Delair T, Jerome C, Auzely-Velty R. Polyester nanoparticles presenting mannose residues: toward the development of new vaccine delivery systems combining biodegradability and targeting properties. Biomacromolecules. 2009;10(3):651–7.

    CAS  PubMed  Google Scholar 

  120. Da Costa Martins R, Gamazo C, Irache JM. Design and influence of gamma-irradiation on the biopharmaceutical properties of nanoparticles containing an antigenic complex from Brucella ovis. Eur J Pharm Sci. 2009;37(5):563–72.

    Google Scholar 

  121. Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology. 2009;214(7):562–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Gordon S. Alternative activation of macrophages Nat Rev Immunol. 2003;3(1):23–35.

    CAS  PubMed  Google Scholar 

  123. McGreal EP, Martinez-Pomares L, Gordon S. Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol Immunol. 2004;41(11):1109–21.

    CAS  PubMed  Google Scholar 

  124. Da Costa Martins R, Gamazo C, Sanchez-Martinez M, Barberan M, Penuelas I, Irache JM. Conjunctival vaccination against Brucella ovis in mice with mannosylated nanoparticles. J Control Release. 2012;162(3):553–60.

    Google Scholar 

  125. World Health Organization. The development of new/improved brucellosis vaccines (WHO/EMCD//ZDI/98.14). 1997. http://whqlibdoc.who.int/hq/1998/WHO_EMC_ZDI_98.14.pdf. Accessed 15 Apr 2013.

  126. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58.

    CAS  PubMed  Google Scholar 

  127. Chentoufi AA, Dasgupta G, Nesburn AB, Bettahi I, Binder NR, Choudhury ZS, Chamberlain WD, Wechsler SL, BenMohamed L. Nasolacrimal duct closure modulates ocular mucosal and systemic CD4(+) T-cell responses induced following topical ocular or intranasal immunization. Clin Vaccine Immunol. 2010;17(3):342–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Hu K, Dou J, Yu F, He X, Yuan X, Wang Y, Liu C, Gu N. An ocular mucosal administration of nanoparticles containing DNA vaccine pRSC-gD-IL-21 confers protection against mucosal challenge with herpes simplex virus type 1 in mice. Vaccine. 2011;29(7):1455–62.

    CAS  PubMed  Google Scholar 

  129. Blasco JM, Molina-Flores B. Control and eradication of Brucella melitensis infection in sheep and goats. Vet Clin North Am Food Anim Pract. 2011;27(1):95–104.

    PubMed  Google Scholar 

  130. Da Costa Martins R, Irache JM, Gamazo C. Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease. Expert Rev Vaccines. 2012;11(1):87–95.

    Google Scholar 

  131. Oliveira SC, de Almeida LA, Carvalho NB, Oliveira FS, Lacerda TL. Update on the role of innate immune receptors during Brucella abortus infection. Vet Immunol Immunopathol. 2012;148(1–2):129–35.

    CAS  PubMed  Google Scholar 

  132. Makloski CL. Canine brucellosis management. Vet Clin North Am Small Anim Pract. 2011;41(6):1209–19.

    PubMed  Google Scholar 

  133. Christopher S, Umapathy BL, Ravikumar KL. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Physicians. 2010;2(2):55–60.

    PubMed Central  PubMed  Google Scholar 

  134. Ridler AL, West DM. Control of Brucella ovis infection in sheep. Vet Clin North Am Food Anim Pract. 2011;27(1):61–6.

    PubMed  Google Scholar 

  135. Hinic V, Brodard I, Thomann A, Cvetnic Z, Makaya PV, Frey J, Abril C. Novel identification and differentiation of Brucella melitensis, B. abortus, B. suis, B. ovis, B. canis, and B. neotomae suitable for both conventional and real-time PCR systems. J Microbiol Methods. 2008;75(2):375–8.

    CAS  PubMed  Google Scholar 

  136. Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol. 2007;57(Pt 11):2688–93.

    CAS  PubMed  Google Scholar 

  137. Scholz HC, Hofer E, Vergnaud G, Le Fleche P, Whatmore AM, Al Dahouk S, Pfeffer M, Kruger M, Cloeckaert A, Tomaso H. Isolation of Brucella microti from mandibular lymph nodes of red foxes, Vulpes vulpes, in lower Austria. Vector Borne Zoonotic Dis. 2009;9(2):153–6.

    PubMed  Google Scholar 

  138. Scholz HC, Nockler K, Gollner C, Bahn P, Vergnaud G, Tomaso H, Al Dahouk S, Kampfer P, Cloeckaert A, Maquart M, Zygmunt MS, Whatmore AM, Pfeffer M, Huber B, Busse HJ, De BK. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol. 2010;60(Pt 4):801–8.

    CAS  PubMed  Google Scholar 

  139. Tiller RV, Gee JE, Frace MA, Taylor TK, Setubal JC, Hoffmaster AR, De BK. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol. 2010;76(17):5837–45.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply acknowledge the support received from “Instituto de Salud Carlos III” (PI12/01358), from Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Irache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Irache, J., Camacho, A., Gamazo, C. (2014). Vaccine Delivery Systems for Veterinary Immunization. In: das Neves, J., Sarmento, B. (eds) Mucosal Delivery of Biopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9524-6_17

Download citation

Publish with us

Policies and ethics