Skip to main content

Concepts in Mucosal Immunity and Mucosal Vaccines

  • Chapter
  • First Online:
Mucosal Delivery of Biopharmaceuticals

Abstract

Currently, the majority of vaccines is administered parenterally by injection and is designed to induce protective immunity mainly through the induction of circulating antibodies. However, it is likely that some vaccines could be more effective if they were administered via mucosal routes. In contrast to parenteral delivery, mucosal immunization offers the possibility to induce immune responses directly at the sites where most pathogens initially infect. Hence, mucosal immunity could act as a first line of defense and, if systemic immunity is also present, could offer two layers of host protection. Moreover, needle-free vaccine administration has many potential additional advantages, including the potential to improve safety and increase patient compliance, with the potential for self-administration. Mucosal vaccine delivery is likely to progress over the next decade as the currently limited knowledge of the molecular mechanisms for the induction of mucosal immunity is expanded. A key challenge will be the design of efficacious and safe mucosal vaccines, with the stability of recombinant antigens after mucosal administration remaining a significant challenge. The combination of a broad panel of adjuvants and delivery technologies holds tremendous promise for effective, safe, needle-free vaccines, and the area is likely set for rapid advances over the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mowat AM, Millington OR, Chirdo FG. Anatomical and cellular basis of immunity and tolerance in the intestine. J Pediatr Gastr Nutr. 2004;39(3):723–4.

    Google Scholar 

  2. Mowat AM, Parker LA, Beacock-Sharp H, Millington OR, Chirdo F. Oral tolerance: overview and historical perspectives. Ann NY Acad Sci. 2004;1029:1–8.

    CAS  PubMed  Google Scholar 

  3. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12(8):592–605.

    CAS  PubMed  Google Scholar 

  4. Cox RJ, Haaheim LR, Ericsson JC, Madhun AS, Brokstad KA. The humoral and cellular responses induced locally and systemically after parenteral influenza vaccination in man. Vaccine. 2006;24(44–46):6577–80.

    CAS  PubMed  Google Scholar 

  5. Atmar RL, Keitel WA, Cate TR, Munoz FM, Ruben F, Couch RB. A dose-response evaluation of inactivated influenza vaccine given intranasally and intramuscularly to healthy young adults. Vaccine. 2007;25(29):5367–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Yuki Y, Kiyono H. New generation of mucosal adjuvants for the induction of protective immunity. Rev Med Virol. 2003;13(5):293–310.

    CAS  PubMed  Google Scholar 

  7. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(4):45–53.

    Google Scholar 

  8. Czerkinsky C, Holmgren J. Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr Top Microbiol Immunol. 2012;354:1–18.

    CAS  PubMed  Google Scholar 

  9. Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2(11):1004–9.

    CAS  PubMed  Google Scholar 

  10. Chieppa M, Rescigno M, Huang AY, Germain RN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med. 2006;203(13):2841–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Kagnoff MF, Eckmann L, Epithelial cells as sensors for microbial infection. J Clin Invest. 1997;100(1):6–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, Yamamoto H, Ishikawa H. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 2002;168(1):57–64.

    Google Scholar 

  13. Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity, Nature reviews. Immunology. 2004;4(9):699–710.

    CAS  PubMed  Google Scholar 

  14. Kunisawa J, Fukuyama S, Kiyono H. Mucosa-associated lymphoid tissues in the aerodigestive tract: their shared and divergent traits and their importance to the orchestration of the mucosal immune system. Curr Mol Med. 2005;5(6):557–72.

    CAS  PubMed  Google Scholar 

  15. Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol. 2012;33(6):289–96.

    CAS  PubMed  Google Scholar 

  16. Kraehenbuhl JP, Neutra MR. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev. 1992;72(4):853–79.

    CAS  PubMed  Google Scholar 

  17. Neutra MR, Frey A, Kraehenbuhl JP. Epithelial M cells: gateways for mucosal infection and immunization. Cell. 1996;86(3):345–48.

    CAS  PubMed  Google Scholar 

  18. Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Ann Rev Immunol. 1996;14:275–300.

    CAS  Google Scholar 

  19. Styers ML, Kowalczyk AP, Faundez V. Intermediate filaments and vesicular membrane traffic: the odd couple’s first dance? Traffic. 2005;6(5):359–65.

    CAS  PubMed  Google Scholar 

  20. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiol. 2001;204(5):572–81.

    CAS  Google Scholar 

  21. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361–7.

    CAS  PubMed  Google Scholar 

  22. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307(5707):254–8.

    CAS  PubMed  Google Scholar 

  23. Niess JH, Reinecker HC. Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract. Curr Opin Gastroen. 2005;21(6):687–91.

    Google Scholar 

  24. McGhee JR, Kiyono H, Michalek SM, Mestecky J. Enteric immunization reveals a T cell network for IgA responses and suggests that humans possess a common mucosal immune system. A Van Leeuw. 1987;53(6):537–43.

    CAS  Google Scholar 

  25. McGhee JR, Xu-Amano J, Miller CJ, Jackson RJ, Fujihashi K, Staats HF, Kiyono H. The common mucosal immune system: from basic principles to enteric vaccines with relevance for the female reproductive tract. Reprod Fert Develop. 1994;6(3):369–79.

    CAS  Google Scholar 

  26. Kaetzel CS, Robinson JK, Chintalacharuvu KR, Vaerman JP, Lamm ME. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc Natl Acad Sci U S A. 1991;88(19):8796–800.

    Google Scholar 

  27. Lamm ME. Interaction of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol. 1997;51:311–40.

    CAS  PubMed  Google Scholar 

  28. Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, Neutra MR. Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer’s patches. J Virol. 2004;78(2):947–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kozlowski PA, Williams SB, Lynch RM, Flanigan TP, Patterson RR, Cu-Uvin S, Neutra MR. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol. 2002;169(1):566–74.

    CAS  PubMed  Google Scholar 

  30. Sheridan BS, Lefrancois L. Regional and mucosal memory T cells. Nat Immunol. 2011;12(6):485–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Belyakov IM, Ahlers JD, Brandwein BY, Earl P, Kelsall BL, Moss B, Strober W, Berzofsky JA. The importance of local mucosal HIV-specific CD8(+) cytotoxic T lymphocytes for resistance to mucosal viral transmission in mice and enhancement of resistance by local administration of IL-12. J Clin Invest. 1998;102(12):2072–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am J Resp Crit Care. 2011;183(12):1595–604.

    Google Scholar 

  33. Mestecky J, Alexander RC, Wei Q, Moldoveanu Z. Methods for evaluation of humoral immune responses in human genital tract secretions. Am J Reprod Immunol. 2011;65(3):361–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Mestecky J, Michalek SM, Moldoveanu Z, Russell MW. Routes of immunization and antigen delivery systems for optimal mucosal immune responses in humans. Behring Inst Mitt. 1997;(98):33–43.

    Google Scholar 

  35. Nugent J, Po AL, Scott EM. Design and delivery of non-parenteral vaccines. J Clin Pharm Ther. 1998;23(4):257–85.

    CAS  PubMed  Google Scholar 

  36. Silin DS, Lyubomska OV, Jirathitikal V, Bourinbaiar AS. Oral vaccination: where we are? Expert Opin Drug Deliv. 2007;4(4):323–40.

    CAS  PubMed  Google Scholar 

  37. Fulginiti VA, Papier A, Lane JM, Neff JM, Henderson DA. Smallpox vaccination: a review, part II. Adverse events. Clin Infect Dis. 2003;37(2):251–71.

    Google Scholar 

  38. Fulginiti VA, Papier A, Lane JM, Neff JM, Henderson DA. Smallpox vaccination: a review, part I. Background, vaccination technique, normal vaccination and revaccination, and expected normal reactions. Clin Infect Dis. 2003;37(2):241–50.

    Google Scholar 

  39. Hilleman MR. Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine. 2000;18(15):1436–47.

    CAS  PubMed  Google Scholar 

  40. No authors. FluMist: an intranasal live influenza vaccine. The medical letter on drugs and therapeutics. 2003;45(1163):65–6.

    Google Scholar 

  41. Pliaka V, Kyriakopoulou Z, Markoulatos P, Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines. 2012;11(5):609–28.

    CAS  PubMed  Google Scholar 

  42. Vajdy M, Singh M. The role of adjuvants in the development of mucosal vaccines. Expert Opin Biol Ther. 2005;5(7):953–65.

    CAS  Google Scholar 

  43. Galli G, Hancock K, Hoschler K, DeVos J, Praus M, Bardelli M, Malzone C, Castellino F, Gentile C, McNally T, G. Del Giudice, Banzhoff A, Brauer V, Montomoli E, Zambon M, Katz J, Nicholson K, Stephenson I. Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc Natl Acad U S A 2009;106(19):7962–967.

    Google Scholar 

  44. Brandtzaeg P, Baekkevold ES, Farstad IN, Jahnsen FL, Johansen FE, Nilsen EM, Yamanaka T. Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol Today. 1999;20(3):141–51.

    Google Scholar 

  45. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58.

    CAS  PubMed  Google Scholar 

  46. Garmory HS, Griffin KF, Brown KA, Titball RW. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague. Vaccine. 2003;21(21–22):3051–57.

    CAS  PubMed  Google Scholar 

  47. Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors, Vaccine. 2003;21(5–6):401–18.

    CAS  PubMed  Google Scholar 

  48. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3(4):331–41.

    CAS  PubMed  Google Scholar 

  49. Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev. 2010;62(4–5):394–407.

    Google Scholar 

  50. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol. 2010;13(1):106–12.

    CAS  PubMed  Google Scholar 

  51. Clark MA, Jepson MA, Simmons NL, Hirst BH. Preferential interaction of Salmonella typhimurium with mouse Peyer’s patch M cells. Res Microbiol. 1994;145(7):543–52.

    CAS  PubMed  Google Scholar 

  52. Amerongen HM, Weltzin R, Farnet CM, Michetti P, Haseltine WA, Neutra MR. Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J Acquir Immune Defic Syndr. 1991;4(8):760–65.

    CAS  PubMed  Google Scholar 

  53. Owen RL, Pierce NF, Apple RT, Cray WC Jr. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: a mechanism for antigen sampling and for microbial transepithelial migration. J Infect Dis. 1986;153(6):1108–18.

    CAS  PubMed  Google Scholar 

  54. Neutra MR, Phillips TL, Mayer EL, Fishkind DJ. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res. 1987;247(3):537–46.

    CAS  PubMed  Google Scholar 

  55. Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med. 2001;193(5):621–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. van der Ven I, Sminia T. The development and structure of mouse nasal-associated lymphoid tissue: an immuno- and enzyme-histochemical study. Region Immunol. 1993;5(2):69–75.

    Google Scholar 

  57. Brooking J, Davis SS, Illum L. Transport of nanoparticles across the rat nasal mucosa. J Drug Target. 2001;9(4):267–79.

    CAS  PubMed  Google Scholar 

  58. Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res. 1992;9(1):1–9.

    CAS  Google Scholar 

  59. Bomsel M, Tudor D, Drillet AS, Alfsen A, Ganor Y, Roger MG, Mouz N, Amacker M, Chalifour A, Diomede L, Devillier G, Cong Z, Wei Q, Gao H, Qin C, Yang GB, Zurbriggen R, Lopalco L, Fleury S. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity. 2011;34(2):269–80.

    CAS  PubMed  Google Scholar 

  60. Czerkinsky C, Cuburu N, Kweon MN, Anjuere F, Holmgren J. Sublingual vaccination. Hum Vaccin. 2011;7(1):110–4.

    CAS  PubMed  Google Scholar 

  61. Baudner BC, Verhoef JC, Giuliani MM, Peppoloni S, Rappuoli R, Del Giudice G, Junginger HE. Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. J Drug Target. 2005;13(8–9):89–498.

    Google Scholar 

  62. Baudner BC, Morandi M, Giuliani MM, Verhoef JC, Junginger HE, Costantino P, Rappuoli R, Del Giudice G Modulation of immune response to group C meningococcal conjugate vaccine given intranasally to mice together with the LTK63 mucosal adjuvant and the trimethyl chitosan delivery system. J Infect Dis. 2004;189(5):828–32.

    CAS  PubMed  Google Scholar 

  63. Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Giudice GD. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine. 2003;21(25–26):3837–44.

    CAS  PubMed  Google Scholar 

  64. O’Hagan AH, Irvine AD, Allen GE, Walsh M. Pseudoporphyria induced by mefenamic acid. Brit J Dermatol. 1998;139(6):1131–32.

    Google Scholar 

  65. Koping-Hoggard M, Sanchez A, Alonso MJ. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev Vaccines. 2005;4(2):185–96.

    Google Scholar 

  66. Moore A, McGuirk P, Adams S, Jones WC, McGee JP, O’Hagan DT, Mills KH. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and CD4+ Th1 cells. Vaccine. 1995;13(18):1741–9.

    CAS  PubMed  Google Scholar 

  67. Shephard MJ, Todd D, Adair BM, Po AL, Mackie DP, Scott EM. Immunogenicity of bovine parainfluenza type 3 virus proteins encapsulated in nanoparticle vaccines, following intranasal administration to mice. Res Vet Sci. 2003;74(2):187–90.

    CAS  PubMed  Google Scholar 

  68. Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T. Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res. 2001;18(3):352–60.

    CAS  Google Scholar 

  69. Nagamoto T, Hattori Y, Takayama K, Maitani Y. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm Res. 2004;21(4):671–4.

    CAS  Google Scholar 

  70. Vila A, Sanchez A, Evora C, Soriano I, McCallion O, Alonso MJ. PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm. 2005;292(1–2):43–52.

    Google Scholar 

  71. Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, Bouwstra J, Broere F, Jiskoot W. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010;28(38):6282–91.

    Google Scholar 

  72. Fujimura Y, Akisada T, Harada T, Haruma K. Uptake of microparticles into the epithelium of human nasopharyngeal lymphoid tissue. Med Mol Morphol. 2006;39(4):181–6.

    PubMed  Google Scholar 

  73. Takata S, Ohtani O, Watanabe Y. Lectin binding patterns in rat nasal-associated lymphoid tissue (NALT) and the influence of various types of lectin on particle uptake in NALT. Arch Histol Cytol. 2000;63(4):305–12.

    CAS  PubMed  Google Scholar 

  74. Giannasca PJ, Boden JA, Monath TP. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins. Infect Immun. 1997;65(10):4288–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Tyrer P, Foxwell AR, Cripps AW, Apicella MA, Kyd JM. Microbial pattern recognition receptors mediate M-cell uptake of a gram-negative bacterium, Infect Immun. 2006:74(1):625–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Fujihashi K, Koga T, van Ginkel FW, Hagiwara Y, McGhee JR. A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine. 2002;20(19–20):2431–8.

    Google Scholar 

  77. Lemiale F, Kong WP, Akyurek LM, Ling X, Huang Y, Chakrabarti BK, Eckhaus M, Nabel GJ. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol. 2003;77(18):10078–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Armstrong ME, Lavelle EC, Loscher CE, Lynch MA, Mills. Proinflammatory responses in the murine brain after intranasal delivery of cholera toxin: implications for the use of AB toxins as adjuvants in intranasal vaccines. J Infect Dis. 2005;192(9):1628–33.

    CAS  PubMed  Google Scholar 

  79. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. New Engl J Med. 2004;350(9):896–903.

    CAS  PubMed  Google Scholar 

  80. Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, Woodrow M, Thierry-Carstensen B, Andersen P, Novicki D, Del Giudice G, Rappuoli R. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin, PloS One. 2009;4(9):e6999.

    PubMed Central  PubMed  Google Scholar 

  81. Hanif SN, Garcia-Contreras L. Pharmaceutical aerosols for the treatment and prevention of Tuberculosis. Front Cell Infect Microbiol. 2012;2:118.

    PubMed Central  PubMed  Google Scholar 

  82. Lu D, Hickey AJ. Pulmonary vaccine delivery. Expert Rev Vaccines. 2007;6(2):213–26.

    CAS  PubMed  Google Scholar 

  83. Blank F, Stumbles P, von Garnier C. Opportunities and challenges of the pulmonary route for vaccination. Expert Opin Drug Deliv. 2011;8(5):547–63.

    CAS  PubMed  Google Scholar 

  84. Moyle PM, McGeary RP, Blanchfield JT, Toth I. Mucosal immunisation: adjuvants and delivery systems. Curr Drug Deliv. 2004;1(4):385–96.

    CAS  PubMed  Google Scholar 

  85. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, Woodland DL, Lund FE, Randall TD. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med. 2004;10(9):927–34.

    CAS  PubMed  Google Scholar 

  86. Roth Y, Chapnik JS, Cole P. Feasibility of aerosol vaccination in humans. Ann Otol Rhinol Laryngol. 2003;112(3):264–70.

    PubMed  Google Scholar 

  87. Smith DJ, Bot S, Dellamary L, Bot A. Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. Vaccine. 2003;21(21–22):2805–12.

    CAS  PubMed  Google Scholar 

  88. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    CAS  PubMed  Google Scholar 

  89. Rautenschlein S, Sharma JM, Winslow BJ, McMillen J, Junker D, Cochran M. Embryo vaccination of turkeys against Newcastle disease infection with recombinant fowlpox virus constructs containing interferons as adjuvants. Vaccine. 1999;18(5–6):426–33.

    CAS  PubMed  Google Scholar 

  90. Murphy D, Van Alstine WG, Clark LK, Albregts S, Knox K. Aerosol vaccination of pigs against Mycoplasma hyopneumoniae infection. Am J Vet Res. 1993;54(11):1874–80.

    CAS  PubMed  Google Scholar 

  91. Deuter A, Southee DJ, Mockett AP. Fowlpox virus: pathogenicity and vaccination of day-old chickens via the aerosol route. Res Vet Sci. 1991;50(3):362–64.

    CAS  PubMed  Google Scholar 

  92. Moss WJ, Griffin DE. Measles, Lancet. 2012;379(9811):153–64.

    PubMed  Google Scholar 

  93. Rottem M, Shoenfeld Y. Vaccination and allergy. Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):223–31.

    PubMed  Google Scholar 

  94. Brimnes J, Kildsgaard J, Jacobi H, Lund K. Sublingual immunotherapy reduces allergic symptoms in a mouse model of rhinitis. Clin Exp Allergy. 2007;37(4):488–97.

    Google Scholar 

  95. Kildsgaard J, Brimnes J, Jacobi H, Lund K. Sublingual immunotherapy in sensitized mice. Ann Allergy Asthma Immunol. 2007;98(4):366–72.

    Google Scholar 

  96. Cuburu N, Kweon MN, Song JH, Hervouet C, Luci C, Sun JB, Hofman P, Holmgren J, Anjuere F, Czerkinsky C. Sublingual immunization induces broad-based systemic and mucosal immune responses in mice. Vaccine. 2007;25(51):8598–610.

    CAS  PubMed  Google Scholar 

  97. Song JH, Nguyen HH, Cuburu N, Horimoto T, Ko SY, Park SH, Czerkinsky C, Kweon MN. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc Natl Acad U S A 2008;105(5):1644–49.

    Google Scholar 

  98. Cuburu N, Kweon MN, Hervouet C, Cha HR, Pang YY, Holmgren J, Stadler K, Schiller JT, Anjuere F, Czerkinsky C. Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. J Immunol. 2009;183(12):7851–9.

    CAS  PubMed  Google Scholar 

  99. Hervouet C, Luci C, Cuburu N, Cremel M, Bekri S, Vimeux L, Maranon C, Czerkinsky C, Hosmalin A, Anjuere F. Sublingual immunization with an HIV subunit vaccine induces antibodies and cytotoxic T cells in the mouse female genital tract. Vaccine. 2010;28(34):5582–90.

    CAS  PubMed  Google Scholar 

  100. Song JH, Kim JI, Kwon HJ, Shim DH, Parajuli N, Cuburu N, Czerkinsky C, Kweon MN. CCR7-CCL19/CCL21-regulated dendritic cells are responsible for effectiveness of sublingual vaccination. J Immunol. 2009;182(11):6851–60.

    CAS  PubMed  Google Scholar 

  101. Pedersen GK, Ebensen T, Gjeraker IH, Svindland S, Bredholt G, Guzman CA, Cox RJ. Evaluation of the sublingual route for administration of influenza H5N1 virosomes in combination with the bacterial second messenger c-di-GMP. PloS One. 2011;6(11):e26973.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Feinberg H, Tso CK, Taylor ME, Drickamer K, Weis WI. Segmented helical structure of the neck region of the glycan-binding receptor DC-SIGNR. J Mol Biol. 2009;394(4):613–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Shortman K, Lahoud MH, Caminschi I. Improving vaccines by targeting antigens to dendritic cells. Exp Mol Med. 2009;41(2):61–66.

    CAS  PubMed  Google Scholar 

  104. Romani N, Thurnher M, Idoyaga J, Steinman RM, Flacher V. Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunol Cell Biol. 2010;88(4):424–30.

    PubMed Central  PubMed  Google Scholar 

  105. Flamar AL, Zurawski S, Scholz F, Gayet I, Ni L, Li XH, Klechevsky E, Quinn J, Oh S, Kaplan DH, Banchereau J, Zurawski G. Noncovalent assembly of anti-dendritic cell antibodies and antigens for evoking immune responses in vitro and in vivo. J Immunol. 2012;189(5):2645–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Peiser M, Koeck J, Kirschning CJ, Wittig B, Wanner R. Human Langerhans cells selectively activated via Toll-like receptor 2 agonists acquire migratory and CD4 + T cell stimulatory capacity. J Leukoc Biol. 2008;83(5):1118–27.

    CAS  PubMed  Google Scholar 

  107. Oh JZ, Kurche JS, Burchill MA, Kedl RM. TLR7 enables cross-presentation by multiple dendritic cell subsets through a type I IFN-dependent pathway. Blood. 2011;118(11):3028–38.

    CAS  PubMed  Google Scholar 

  108. Romani N, Brunner PM, Stingl G. Changing views of the role of Langerhans cells. J Invest Dermatol. 2012;132(3 Pt 2):872–81.

    CAS  PubMed  Google Scholar 

  109. Freytag IC, Clements JD. Bacterial toxins as mucosal adjuvants. Curr Top Microbiol Immunol. 1999;236:215–36.

    CAS  PubMed  Google Scholar 

  110. Pizza M, Giuliani MM, Fontana MR, Monaci E, Douce G, Dougan G, Mills KH, Rappuoli R, Del Giudice G. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine. 2001;19(17–19):2534–41.

    CAS  PubMed  Google Scholar 

  111. Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun. 1997;65(4):1387–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Johansson EL, Wassen L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun. 2001;69(12):7481–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wassen L, Schon K, Holmgren J, Jertborn M, Lycke N. Local intravaginal vaccination of the female genital tract. Scand J Immunol. 1996;44(4):408–14.

    CAS  PubMed  Google Scholar 

  114. Nardelli-Haefliger D, Wirthner D, Schiller JT, Lowy DR, Hildesheim A, Ponci F, De Grandi P. Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J Natl Cancer Inst. 2003;95(15):1128–37.

    PubMed  Google Scholar 

  115. Iwasaki A. Antiviral immune responses in the genital tract: clues for vaccines, Nat Rev Immunol. 2010;10(10):699–711.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Schiller JT, Castellsague X, Villa LL, Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine. 2008;26(Suppl 10):K53–61.

    Google Scholar 

  117. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994;68(9):6103–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Watkins DI, Burton DR, EGKallas, Moore JP, Koff WC. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med. 2008;14(6):617–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. de Boer AG, Moolenaar F, de Leede LG, Breimer DD. Rectal drug administration: clinical pharmacokinetic considerations. Clin Pharmacokinet. 1982;7(4):285–311.

    CAS  PubMed  Google Scholar 

  120. Kantele A, Hakkinen M, Moldoveanu Z, Lu A, Savilahti E, Alvarez RD, Michalek S, Mestecky J. Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect Immun. 1998;66(12):5630–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Pechine S, Deneve C, Le Monnier A, Hoys S, Janoir C, Collignon A. Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol Med Microbiol. 2011;63(1):73–81.

    CAS  Google Scholar 

  122. Yu J, Cassels F, Scharton-Kersten T, Hammond SA, Hartman A, Angov E, Corthesy B, Alving C, Glenn G. Transcutaneous immunization using colonization factor and heat-labile enterotoxin induces correlates of protective immunity for enterotoxigenic Escherichia coli. Infect Immun. 2002;70(3):1056–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Glenn GM, Flyer DC, Ellingsworth LR, Frech SA, Frerichs DM, Seid RC, Yu J. Transcutaneous immunization with heat-labile enterotoxin: development of a needle-free vaccine patch. Expert Rev Vaccines. 2007;6(5):809–19.

    CAS  PubMed  Google Scholar 

  124. Uddowla S, Freytag LC, Clements JD. Effect of adjuvants and route of immunizations on the immune response to recombinant plague antigens. Vaccine. 2007;25(47):7984–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Vogt A, Mahe B, Costagliola D, Bonduelle O, Hadam S, Schaefer G, Schaefer H, Katlama C, Sterry W, Autran B, Blume-Peytavi U, Combadiere B. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol. 2008;180(3):1482–89.

    CAS  PubMed  Google Scholar 

  126. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):63–1072.

    Google Scholar 

  127. Lawson LB, Clements JD, Freytag LC. Mucosal immune responses induced by transcutaneous vaccines. Curr Top Microbiol Immunol. 2012;354:19–37.

    CAS  PubMed  Google Scholar 

  128. Nicolas JF, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008;7(8):1201–14.

    PubMed  Google Scholar 

  129. Glenn GM, Kenney RT. Mass vaccination: solutions in the skin. Curr Top Microbiol Immunol. 2006;304:247–68.

    CAS  PubMed  Google Scholar 

  130. Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234(1):120–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Teunissen MB, Haniffa M, Collin MP. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol. 2012;351:25–76.

    CAS  PubMed  Google Scholar 

  132. Gockel CM, Bao S, Beagley KW. Transcutaneous immunization induces mucosal and systemic immunity: a potent method for targeting immunity to the female reproductive tract. Mol Immunol. 2000;37(9):537–44.

    CAS  PubMed  Google Scholar 

  133. Naito S, Maeyama J, Mizukami T, Takahashi M, Hamaguchi I, Yamaguchi K. Transcutaneous immunization by merely prolonging the duration of antigen presence on the skin of mice induces a potent antigen-specific antibody response even in the absence of an adjuvant. Vaccine. 2007;25(52):8762–70.

    CAS  PubMed  Google Scholar 

  134. Novak N, Bieber T. 2. Dendritic cells as regulators of immunity and tolerance. J Allergy Clin Immunol. 2008;121(2 Suppl):S370–4; quiz S413.

    Google Scholar 

  135. Rechtsteiner G, Warger T, Osterloh P, Schild H, Radsak MP. Cutting edge: priming of CTL by transcutaneous peptide immunization with imiquimod. J Immunol. 2005;174(5):2476–80.

    CAS  PubMed  Google Scholar 

  136. He Y, Zhang J, Donahue C, Falo LD Jr. Skin-derived dendritic cells induce potent CD8(+) T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity. 2006;24(5):643–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Belyakov IM, Hammond SA, Ahlers JD, Glenn GM, Berzofsky JA. Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J Clin Invest. 2004;113(7);998–1007.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med. 2000;6(12):1403–6.

    CAS  PubMed  Google Scholar 

  139. Etchart N, Hennino A, Friede M, Dahel K, Dupouy M, Goujon-Henry C, Nicolas JF, Kaiserlian D. Safety and efficacy of transcutaneous vaccination using a patch with the live-attenuated measles vaccine in humans. Vaccine. 2007;25(39–40):6891–9.

    CAS  PubMed  Google Scholar 

  140. Glenn GM, Villar CP, Flyer DC, Bourgeois AL, McKenzie R, Lavker RM, Frech SA. Safety and immunogenicity of an enterotoxigenic Escherichia coli vaccine patch containing heat-labile toxin: use of skin pretreatment to disrupt the stratum corneum. Infect Immun. 2007;75(5):2163–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Frech SA, Dupont HL, Bourgeois AL, McKenzie R, Belkind-Gerson J, Figueroa JF, Okhuysen PC, Guerrero NH, Martinez-Sandoval FG, Melendez-Romero JH, Jiang ZD, Asturias EJ, Halpern J, Torres OR, Hoffman AS, Villar CP, Kassem RN, Flyer DC, Andersen BH, Kazempour K, Breisch SA, Glenn GM. Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet. 2008;371(9629):2019–25.

    CAS  PubMed  Google Scholar 

  142. Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest. 1992;90(2):482–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Cumberbatch M, Dearman RJ, Kimber I. Langerhans cells require signals from both tumour necrosis factor-alpha and interleukin-1 beta for migration. Immunology. 1997;92(3):388–95.

    CAS  PubMed  Google Scholar 

  144. Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol. 2012;351:77–112.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Kommareddy S, Baudner BC, Oh S, Kwon SY, Singh M, O’Hagan DT. Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci. 2012;101(3):1021–7.

    CAS  PubMed  Google Scholar 

  146. Verstrepen BE, Bins AD, Rollier CS, Mooij P, Koopman G, Sheppard NC, Sattentau Q, Wagner R, Wolf H, Schumacher TN, Heeney JL, Haanen JB. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine. 2008;26(26):3346–51.

    CAS  PubMed  Google Scholar 

  147. Leroux-Roels I, Weber F. Intanza (®) 9 µg intradermal seasonal influenza vaccine for adults 18 to 59 years of age. Hum Vaccin Immunother. 2013;9(1):115–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Kommareddy S, Baudner BC, Bonificio A, Gallorini S, Palladino G, Determan AS, Dohmeier DM, Kroells KD, Sternjohn JR, Singh M, Dormitzer PR, Hansen KJ, O’Hagan DT. Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs. Vaccine. 2013;31(34):3435-41.

    PubMed  Google Scholar 

  149. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    CAS  Google Scholar 

  150. Weldon WC, Zarnitsyn VG, Esser ES, Taherbhai MT, Koutsonanos DG, Vassilieva EV, Skountzou I, Prausnitz MR, Compans RW. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PloS One. 2012;7(7):e41501.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Giorgio Corsi for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Gallorini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallorini, S., O’Hagan, D., Baudner, B. (2014). Concepts in Mucosal Immunity and Mucosal Vaccines. In: das Neves, J., Sarmento, B. (eds) Mucosal Delivery of Biopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9524-6_1

Download citation

Publish with us

Policies and ethics