Skip to main content

Experimental Characterization of Peptide–Surface Interactions

  • Chapter
  • First Online:
Bio-Inspired Nanotechnology

Abstract

Interactions between peptides and proteins with material surfaces are fundamental to a broad range of applications in biotechnology and biomedical engineering. Many different methods have been developed to measure a range of properties that quantify these types of interactions. In this chapter, three of these methods are presented for the determination of thermodynamic parameters that characterize peptide adsorption behavior, each of which is based on a different type of measurement. These three methods are surface plasmon resonance spectroscopy (SPR; spectroscopic-based method), atomic force microscopy (AFM; force-based method), and isothermal titration calorimetry (ITC; thermal-based method). The fundamental principles underlying each of these methods are presented followed by examples of their application for the determination of thermodynamic properties for specific peptide/protein-surface systems. The SPR method is presented for the determination of the standard-state adsorption free energy from adsorption isotherms characterizing the amount of peptide adsorbed as a function of solution concentration. This method, however, is limited to materials that can be used to form nanoscale-thick films about 100 nm thick or less on a gold biosensor substrate. For materials that are not easily formed into thin films, thus not being conducive for use with SPR, an AFM method is presented that can be used with any macroscopically flat surface through the correlation of peptide desorption force measured by AFM with adsorption free energy measurements by SPR. The third approach, ITC, measures thermal energy changes on adsorption with the method being applicable to the interaction of peptides/proteins with particles suspended in solution. The combined set of methods provides the means to quantitatively determine thermodynamic properties characterizing peptide and protein adsorption behavior for materials in either their bulk or particulate form, with important application to the broad range of technologies that involve contact between biological solutions and synthetic material surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ababou A, Ladbury JE (2006) Survey of the year 2004: literature on applications of isothermal titration calorimetry. J Mol Recogn 19(1):79–89

    Google Scholar 

  • Allison DP, Hinterdorfer P, Han W (2002) Biomolecular force measurements and the atomic force microscope. Curr Opin Biotechnol 13(1):47–51

    Google Scholar 

  • Ball V, Maechling C (2009) Isothermal microcalorimetry to investigate non specific interactions in biophysical chemistry. Int J Mol Sci 10(8):3283–3315

    Google Scholar 

  • Biltonen R, Langerman N (1979) Microcalorimetry for biological chemistry: experimental design, data analysis, and interpretation. Methods Enzymol 61:287–318

    Google Scholar 

  • Blanchette CD, Loui A, Ratto TV (2008) Tip functionalization: applications to chemical force spectroscopy. Handbook of Molecular Force Spectroscopy, pp 185–203

    Google Scholar 

  • Blankschien MD, Pretzer LA, Huschka R et al (2013) Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes. ACS Nano 7(1):654–663

    Google Scholar 

  • Bouchemal K, Mazzaferro S (2012) How to conduct and interpret ITC experiments accurately for cyclodextrin-guest interactions. Drug Discov Today 17(11):623–629

    Google Scholar 

  • Bramwell VW, Eyles JE, Oya Alpar H (2005) Particulate delivery systems for biodefense subunit vaccines. Adv Drug Deliv Rev 57:1247–1265

    Google Scholar 

  • Bryers JD, Giachelli CM, Ratner BD (2012) Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol Bioeng 109(8):1898–1911

    Google Scholar 

  • Camci-Unal G, Pohl NLB (2010) Thermodynamics of binding interactions between divalent copper and chitin fragments by isothermal titration calorimetry (ITC). Carbohydr Polym 81(1):8–13

    Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Google Scholar 

  • Charles MR, Abraham ML (2003) Quanatitative modeling of protein adsorption. Biopolymers at Interfaces. M. M. Dekker, New York, pp 71–94

    Google Scholar 

  • Chen Y, Ming H (2012) Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens 2(1):37–49

    Google Scholar 

  • Chen K, Xu Y, Rana S et al (2011) Electrostatic selectivity in protein–nanoparticle interactions. Biomacromolecules 12(7):2552–2561

    Google Scholar 

  • Chiad K, Stelzig SH, Gropeanu R et al (2009) Isothermal titration calorimetry: a powerful technique to quantify interactions in polymer hybrid systems. Macromolecules 42(19):7545–7552

    Google Scholar 

  • Chilom CG, Craescu CT, Popescu AI (2004) Parameters of interaction between proteins and their specific ligands, deduced by isothermal titration calorimetry. In: Paper presented at the 5th International Balkan workshop on applied physics, pp 443–457

    Google Scholar 

  • Chiu CY, Li Y, Ruan L et al (2011) Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat Chem 3(5):393–399

    Google Scholar 

  • Cho N, Cheong T, Min JH et al (2011) A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6(10):675–682

    Google Scholar 

  • Cliff MJ, Gutierrez A, Ladbury JE (2004) A survey of the year 2003 literature on applications of isothermal titration calorimetry. J Mol Recogn 17(6):513–523

    Google Scholar 

  • Crespo-Quesada M, Andanson J, Yarulin A et al (2011) UV–ozone cleaning of supported poly (vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and catalytic behavior. Langmuir 27(12):7909–7916

    Google Scholar 

  • Davis SA, Dujardin E, Mann S (2003) Biomolecular inorganic materials chemistry. Curr Opin Solid State Mater Sci 7(4–5):273–281

    Google Scholar 

  • de Mol NJ, Fischer MJ (2010) Surface plasmon resonance: a general introduction. Methods Mol Biol 627:1–14

    Google Scholar 

  • De M, You C, Srivastava S et al (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129(35):10747–10753

    Google Scholar 

  • Dickerson MB, Sandhage KH, Naik RR (2008) Protein-and peptide-directed syntheses of inorganic materials. Chem Rev 108(11):4935–4978

    Google Scholar 

  • Dujardin E, Mann S (2002) Bio-inspired materials chemistry. Adv Mater 14(11):775

    Google Scholar 

  • Everett DH (1964) Thermodynamics of adsorption from solution. Part 1. Perfect systems. Trans Faraday Soc 60:1803–1813

    Google Scholar 

  • Fears KP, Creager SE, Latour RA (2008) Determination of the surface pK of carboxylic- and amine-terminated alkanethiols using surface plasmon resonance spectroscopy. Langmuir 24(3):837–843

    Google Scholar 

  • Fenoglio I, Fubini B, Ghibaudi EM et al (2011) Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 63(13):1186–1209

    Google Scholar 

  • Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113

    Google Scholar 

  • Gandavarapu NR, Mariner PD, Schwartz MP et al (2013) Extracellular matrix protein adsorption to phosphate-functionalized gels from serum promotes osteogenic differentiation of human mesenchymal stem cells. Acta Biomater 9(1):4525–4534

    Google Scholar 

  • Garcia AJ (2006) Interfaces to control cell-biomaterial adhesive interactions. Polymers for Regenerative Medicine. C. Werner, J. H. Eisseeff, C. Fischbachet al:171–190

    Google Scholar 

  • Geelhood SJ, Horbett TA, Ward WK et al (2007) Passivating protein coatings for implantable glucose sensors: evaluation of protein retention. J Biomed Mater Res B 81B(1):251–260

    Google Scholar 

  • Goobes G, Goobes R, Shaw WJ et al (2007) The structure, dynamics, and energetics of protein adsorption—lessons learned from adsorption of statherin to hydroxyapatite. Magn Reson Chem 45(S1):S32–S47

    Google Scholar 

  • Goobes R, Goobes G, Shaw WJ et al (2007) Thermodynamic roles of basic amino acids in statherin recognition of hydroxyapatite. Biochemistry 46(16):4725–4733

    Google Scholar 

  • Gourishankar A, Shukla S, Ganesh KN et al (2004) Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles. J Am Chem Soc 126(41):13186–13187

    Google Scholar 

  • Green RJ, Frazier RA, Shakesheff KM et al (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21(18):1823–1835

    Google Scholar 

  • Gref R, Domb A, Quellec P et al (2012) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 64:316–326

    Google Scholar 

  • Haruki M, Noguchi E, Kanaya S et al (1997) Kinetic and stoichiometric analysis for the binding of Escherichia coli ribonuclease HI to RNA–DNA hybrids using surface plasmon resonance. J Biol Chem 272(35):22015–22022

    Google Scholar 

  • Herr AE (2009). Protein microarrays for the dectection of biothreats. In: Dill RHLK, Grodzinski P (eds) Microarrays. Preparation, microfluidics, detection methods, and biological applications. Springer, New York, pp 169–190

    Google Scholar 

  • Hoffmann F, Cornelius M, Morell J et al (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

    Google Scholar 

  • Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Cheml 54(1–2):3–15

    Google Scholar 

  • Horinek D, Serr A, Geisler M et al (2008) Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces. Proc Natl Acad Sci U S A 105(8):2842–2847

    Google Scholar 

  • Huang R, Carney R, Stellacci F et al (2013) Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity is scale dependent. Nanoscale 5:6928–6935

    Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Google Scholar 

  • Jiang X, Ortiz C, Hammond PT (2002) Exploring the rules for selective deposition: Interactions of model polyamines on acid and oligoethylene oxide surfaces. Langmuir 18(4):1131–1143

    Google Scholar 

  • Joshi H, Shirude PS, Bansal V et al (2004) Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J Phys Chem B 108(31):11535–11540

    Google Scholar 

  • Jung LS, Nelson KE, Campbell CT et al (1999) Surface plasmon resonance measurement of binding and dissociation of wild-type and mutant streptavidin on mixed biotin-containing alkylthiolate monolayers. Sens Actuators B Chem 54(1–2):137

    Google Scholar 

  • Karlsen V, Heggset EB, Sørlie M (2010) The use of isothermal titration calorimetry to determine the thermodynamics of metal ion binding to low-cost sorbents. Thermochim Acta 501(1–2):119–121

    Google Scholar 

  • Kasemo B, Gold J (1999) Implant surfaces and interface processes. Adv Dent Res 13:8–20

    Google Scholar 

  • Kidoaki S, Matsuda T (2002) Mechanistic aspects of protein/material interactions probed by atomic force microscopy. Colloids Surf B 23(2–3):153–163

    Google Scholar 

  • Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci 104(7):2029–2030

    Google Scholar 

  • Knowles JR (1991) Enzyme catalysis: not different, just better. Nature 350:121–124

    Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442):1129–1132

    Google Scholar 

  • Kumar A, Mandal S, Pasricha R et al (2003) Investigation into the interaction between surface bound alkylamines and gold nanoparticles. Langmuir 19(15):6277–6282

    Google Scholar 

  • Ladbury JE, Doyle ML (2005) Biocalorimetry 2: applications of calorimetry in the biological sciences. Wiley, Chichester

    Google Scholar 

  • Lal R, John SA (1994) Biological applications of atomic force microscopy. Am J Physiol Cell Physiol 266(1):C1–C21

    Google Scholar 

  • Lan Q, Bassi AS, Zhu J-X et al (2001) A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. Chem Eng J 81:179–186

    Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. part i. solids. J Am Chem Soc 38:2221–2295

    Google Scholar 

  • Latour RA (2008) Molecular dynamics simulation of protein-surface interactions: benefits, problems, solutions, and future directions. Biointerphases 3:FC2–FC12

    Google Scholar 

  • Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11(5):560–566

    Google Scholar 

  • Li X, Husson SM (2006) Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Biosens Bioelectron 22(3):336–348

    Google Scholar 

  • Liang Y (2008) Applications of isothermal titration calorimetry in protein science. Acta Biochim Biophys Sin 40(7):565–576

    Google Scholar 

  • Liang M, Deschaume O, Patwardhan SV et al (2011) Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides. J Mater Chem 21(1):80–89

    Google Scholar 

  • Lindman S, Lynch I, Thulin E et al (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7(4):914–920

    Google Scholar 

  • Liu HN, Webster TJ (2010) Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J Biomed Mater Res A 93A(3):1180–1192

    Google Scholar 

  • Loomans E, Beumer TAM, Damen KCS et al (1997) Real-time monitoring of peptide-surface and peptide-antibody interaction by means of reflectometry and surface plasmon resonance. J Colloid Interface Sci 192(1):238–249

    Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1):40–47

    Google Scholar 

  • Mahmood TA, Miot S, Frank O et al (2006) Modulation of chondrocyte phenotype for tissue engineering by designing the biologic-polymer carrier interface. Biomacromolecules 7(11):3012–3018

    Google Scholar 

  • Mahmoudi M, Lynch I, Ejtehadi MR et al (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637

    Google Scholar 

  • Martinez JC, Murciano-Calles J, Cobos ES et al (2013) Isothermal titration calorimetry: thermodynamic analysis of the binding thermograms of molecular recognition events by using equilibrium models. In: Elkordy AA (ed) Chapter 4, Applications of Calorimetry in a Wide Context-Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry. InTech—Open Access Company, pp 73–104

    Google Scholar 

  • Mazaheri M, Zahedi AM, Sadrnezhaad SK (2008) Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth. J Am Ceram Soc 91(1):56–63

    Google Scholar 

  • MicroCal L (2003) VP–ITC microcalorimeter user’s manual. Microcal, Llc pp 1–94

    Google Scholar 

  • Monzó J, Koper M, Rodriguez P (2012) Removing polyvinylpyrrolidone from catalytic Pt nanoparticles without modification of superficial order. ChemPhysChem 13(3):709–715

    Google Scholar 

  • Naik RR, Brott LL, Clarson SJ et al (2002) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 2(1):95–100

    Google Scholar 

  • Oka K, Shibata H, Kashiwaya S (2002) Crystal growth of ZnO. J Cryst Growth 237–239, Part 1:509–513

    Google Scholar 

  • Oren EE, Tamerler C, Sarikaya M (2005) Metal recognition of septapeptides via polypod molecular architecture. Nano Lett 5(3):415–419

    Google Scholar 

  • Perozzo R, Folkers G, Scapozza L (2004) Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Signal Transduct 24(1–2):1–52

    Google Scholar 

  • Perry CC, Patwardhan SV, Deschaume O (2009) From biominerals to biomaterials: the role of biomolecule-mineral interactions. Biochem Soc Trans 37:687–691

    Google Scholar 

  • Pierce MM, Raman C, Nall BT (1999) Isothermal titration calorimetry of protein–protein interactions. Methods 19(2):213–221

    Google Scholar 

  • Pirzer T, Geisler M, Scheibel T et al (2009) Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion. Phys Biol 6(2):25004

    Google Scholar 

  • Pitarke JM, Silkin VM, Chulkov EV et al (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70(1):1

    Google Scholar 

  • Poon GM (2010) Explicit formulation of titration models for isothermal titration calorimetry. Anal Biochem 400(2):229–236

    MathSciNet  Google Scholar 

  • Raj P, Johnsson M, Levine MJ et al (1992) Salivary statherin. dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J Biol Chem 267(9):5968–5976

    Google Scholar 

  • Rautaray D, Mandal S, Sastry M (2005) Synthesis of hydroxyapatite crystals using amino acid-capped gold nanoparticles as a scaffold. Langmuir 21(11):5185–5191

    Google Scholar 

  • Rezwan K, Studart A, Vörös J et al (2005) Change of ζ potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B 109(30):14469–14474

    Google Scholar 

  • Rioux R, Song H, Grass M et al (2006) Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects. Top Catal 39(3):167–174

    Google Scholar 

  • Ruan L, Ramezani-Dakhel H, Chiu C et al (2013) Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt {111}. Nano Lett 13(2):840–846

    Google Scholar 

  • Sabia R, Ukrainczyk L (2000) Surface chemistry of SiO2 and TiO2–SiO2 glasses as determined by titration of soot particles. J Non-Cryst Solids 277(1):1–9

    Google Scholar 

  • Sanford K, Kumar M (2005) New proteins in a materials world. Curr Opin Biotechnol 16(4):416–421

    Google Scholar 

  • Sarikaya M, Tamerler C, Jen AKY et al (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577–585

    Google Scholar 

  • Schmidtchen, F.P. (2012) Isothermal titration calorimetry in supramolecular chemistry. Supramolecular Chemistry: From Molecules to Nanomaterials, 67-103

    Google Scholar 

  • Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277(2):260–266

    Google Scholar 

  • Silin VV, Weetall H, Vanderah DJ (1997) SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). J Colloid Interface Sci 185(1):94–103

    Google Scholar 

  • Snyder JA, Abramyan T, Yancey JA et al (2012) Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass. Biointerphases 7(1–4):51–12 (article 56)

    Google Scholar 

  • Song H, Kim F, Connor S et al (2005) Pt nanocrystals: shape control and Langmuir-Blodgett monolayer formation. J Phys Chem B 109(1):188–193

    Google Scholar 

  • Stenberg E, Persson B, Roos H et al (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143(2):513–526

    Google Scholar 

  • Tamerler C, Oren EE, Duman M et al (2006) Adsorption kinetics of an engineered gold binding Peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir 22(18):7712–7718

    Google Scholar 

  • Taylor AD, Ladd J, Homola J et al (2008) Surface plasmon resonance (SPR) sensors for the detection of bacterial pathogens. In: Zourob M, Elwary S, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and microsystems, Springer, New York, pp 83–108

    Google Scholar 

  • Thomson JA, Ladbury JE (2004) Isothermal titration calorimetry: a tutorial. Biocalorimetry 2:37–58

    Google Scholar 

  • Thyparambil AA, Wei Y, Latour RA (2012) Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM. Langmuir 28(13):5687–5694

    Google Scholar 

  • Togashi T, Yokoo N, Umetsu M et al (2011) Material-binding peptide application—ZnO crystal structure control by means of a ZnO-binding peptide. J Biosci Bioeng 111(2):140–145

    Google Scholar 

  • Tomczak M, Gupta MK, Drummy LF et al (2009) Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater 5(3):876–882

    Google Scholar 

  • Velazquez-Campoy A, Kiso Y, Freire E (2001) The binding energetics of first-and second-generation HIV-1 protease inhibitors: implications for drug design. Arch Biochem Biophys 390(2):169–175

    Google Scholar 

  • Vellore NA, Yancey JA, Collier G et al (2010) Assessment of the transferability of a protein force field for the simulation of peptide-surface interactions. Langmuir 26:7396–7404

    Google Scholar 

  • Vernekar VN, Latour RA (2005) Adsorption thermodynamics of a mid-chain peptide residue on functionalized SAM surfaces using SPR. Mater Res Innov 9:337–353

    Google Scholar 

  • Wei Y, Latour RA (2008) Determination of the adsorption free energy for peptide-surface interactions by SPR spectroscopy. Langmuir 24(13):6721–6729

    Google Scholar 

  • Wei Y, Latour RA (2009) Benchmark experimental data set and assessment of adsorption free energy for peptide-surface interactions. Langmuir 25(10):5637–5646

    Google Scholar 

  • Wei Y, Latour RA (2010) Correlation between desorption force measured by atomic force microscopy and adsorption free energy measured by surface plasmon resonance spectroscopy for peptide-surface interactions. Langmuir 26(24):18852–18861

    Google Scholar 

  • Wei Y, Thyparambil AA, Latour RA (2012) Peptide–surface adsorption free energy comparing solution conditions ranging from low to medium salt concentrations. ChemPhysChem 13(17):3782–3785

    Google Scholar 

  • Whyburn GP, Li YJ, Huang Y (2008) Protein and protein assembly based material structures. J Mater Chem 18(32):3755–3762

    Google Scholar 

  • Wikiel K, Burke EM, Perich JW et al (1994) Hydroxyapatite mineralization and demineralization in the presence of synthetic phosphorylated pentapeptides. Arch Oral Biol 39(8):715–721

    Google Scholar 

  • Willemsen OH, Snel MM, Cambi A et al (2000) Biomolecular interactions measured by atomic force microscopy. Biophys J 79(6):3267–3281

    Google Scholar 

  • Wiseman T, Williston S, Brandts JF et al (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179(1):131–137

    Google Scholar 

  • Wisniewski N, Moussy F, Reichert WM (2000) Characterization of implantable biosensor membrane biofouling. Fresenius’ J Anal Chem 366(6):611

    Google Scholar 

  • Wu H, Zhang CH, Liang YP et al (2013) Catechol modification and covalent immobilization of catalase on titania submicrospheres. J Mol Catal B-Enzym 92:44–50

    Google Scholar 

  • You CC, Agasti SS, Rotello VM (2008) Isomeric control of protein recognition with amino acid- and dipeptide-functionalized gold nanoparticles. Chem Eur J 14(1):143–150

    Google Scholar 

  • You C, De M, Han G, Rotello VM (2005a) Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles. J Am Chem Soc 127(37):12873–12881

    Google Scholar 

  • You C, De M, Rotello VM (2005b) Contrasting effects of exterior and interior hydrophobicmoieties in the complexation of amino acid functionalized gold clusters with α-chymotrypsin. Org Lett 7(25):5685–5688

    Google Scholar 

  • Zhang Z, Menges B, Timmons RB et al (2003) Surface plasmon resonance studies of protein binding on plasma polymerized di(ethylene glycol) monovinyl ether films. Langmuir 19(11):4765–4770

    Google Scholar 

Download references

Acknowledgments

R.A. Latour and Y. Wei would like to acknowledge support for this research from the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense (Grant no. HDTRA1-10-1-0028). The facilities used were also supported by NIH Grants 5P20RR021949-04 and 8P20GM103444-04. We also would like to thank Ms. Megan Grobman, Dr. Lara Gamble, and Dr. David Castner of NESAC/BIO at the University of Washington for assistance with surface characterization with XPS under the funding support by NIH NIBIB (grant # EB002027). C.C. Perry and M.J. Limo would like to thank their collaborators at the Air force office of scientific research (AFOSR) for funding and support of their studies (FA9550-10-1-0024 and FA9550-13-1-0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole C. Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Limo, M.J., Perry, C.C., Thyparambil, A.A., Wei, Y., Latour, R.A. (2014). Experimental Characterization of Peptide–Surface Interactions. In: Knecht, M., Walsh, T. (eds) Bio-Inspired Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9446-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9446-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9445-4

  • Online ISBN: 978-1-4614-9446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics