Other Epitaxial Oxides on Semiconductors

  • Alexander A. Demkov
  • Agham B. Posadas


The success of integrating perovskites on Si(001) has also stimulated work on developing growth processes for other oxide materials, other crystallographic orientations, and even other semiconductor substrates. A review of the current work is summarized in this chapter, including efforts at growing the opposite stack of semiconductors on oxide surfaces. Work on the epitaxial integration of oxides on Si(111), Ge, GaAs, GaN, SiC is described. Oxides other than SrTiO3 that have been grown on Si(100) are also reviewed. It is hoped that this short history of the major advances in oxide/semiconductor epitaxy can provide insight into the various substrate preparation and film deposition tricks and techniques that enable such epitaxial systems to be made.


Substrate Temperature Epitaxial Growth Barium Hexaferrite Large Lattice Mismatch Solid Phase Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K.J. Hubbard, D.G. Schlom, Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757 (1996)Google Scholar
  2. 2.
    D.K. Fork, F.A. Ponce, J.C. Tramontana, T.H. Geballe, Epitaxial MgO on Si(001) for Y‐Ba‐Cu‐O thin‐film growth by pulsed laser deposition. Appl. Phys. Lett. 58, 2294 (1991)Google Scholar
  3. 3.
    G.X. Miao et al., Epitaxial growth of MgO and Fe/MgO/Fe magnetic tunnel junctions on (100)-Si by molecular beam epitaxy. Appl. Phys. Lett. 93, 142511 (2008)Google Scholar
  4. 4.
    C. Wolverton, K.C. Hass, Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B 63, 024102 (2000)Google Scholar
  5. 5.
    C. Merckling et al., Pseudomorphic molecular beam epitaxy growth of gamma-Al2O3(001) on Si(001) and evidence for spontaneous lattice reorientation during epitaxy. Appl. Phys. Lett. 89, 232907 (2006)Google Scholar
  6. 6.
    K. Sawada, M. Ishida, T. Nakamura, N. Ohtake, Metalorganic molecular beam epitaxy of γ‐Al2O3 films on Si at low growth temperatures. Appl. Phys. Lett. 52, 1672 (1988)Google Scholar
  7. 7.
    C. Merckling et al., Growth of crystalline γ‐Al2O3 on Si by molecular beam epitaxy: influence of the substrate orientation. J. Appl. Phys. 102, 024101 (2007)Google Scholar
  8. 8.
    D. Akai, K. Hirabayashi, M. Yokawa, K. Sawada, M. Ishida, Epitaxial growth of Pt(001) thin films on Si substrates using an epitaxial γ-Al2O3(001) buffer layer. J. Cryst. Growth 264, 463 (2004)Google Scholar
  9. 9.
    Y.-C. Jung, H. Miura, K. Ohtani, M. Ishida, High-quality silicon/insulator heteroepitaxial structures formed by molecular beam epitaxy using Al2O3 and Si. J. Cryst. Growth 196, 88 (1999)Google Scholar
  10. 10.
    L. Wang et al., Wurtzite GaN epitaxial growth on a Si(001) substrate using γ-Al2O3 as an intermediate layer. Appl. Phys. Lett. 72, 109 (1998)Google Scholar
  11. 11.
    D.K. Fork, D.B. Fenner, G.A.N. Connell, J.M. Phillips, T.H. Geballe, Epitaxial yttria‐stabilized zirconia on hydrogen‐terminated Si by pulsed laser deposition. Appl. Phys. Lett. 57, 1137 (1990)Google Scholar
  12. 12.
    S.J. Wang, C.K. Ong, L.P. You, S.Y. Xu, Epitaxial growth of yttria-stabilized zirconia oxide thin film on natively oxidized silicon wafer without an amorphous layer. Semicond. Sci. Tech. 15, 836 (2000)Google Scholar
  13. 13.
    S.J. Wang et al., Crystalline zirconia oxide on silicon as alternative gate dielectrics. Appl. Phys. Lett. 78, 1604 (2001)Google Scholar
  14. 14.
    M. Ihara et al., Vapor phase epitaxial growth of MgO-Al2O3. J. Electrochem. Soc. 129, 2569 (1982)Google Scholar
  15. 15.
    S. Miura et al., Epitaxial Y‐Ba‐Cu‐O films on Si with intermediate layer by rf magnetron sputtering. Appl. Phys. Lett. 53, 1967 (1988)Google Scholar
  16. 16.
    D.M. Hwang et al., Epitaxial relations between in situ superconducting YBa2Cu3O7-x thin films and BaTiO3/MgAl2O4/Si substrates. J. Appl. Phys. 68, 1772 (1990)Google Scholar
  17. 17.
    S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, Band offset and structure of SrTiO3/Si(001) heterojunctions. J. Vac. Sci. Tech. A 19, 934 (2001)Google Scholar
  18. 18.
    M. Sousa et al., Optical properties of epitaxial SrHfO3 thin films grown on Si. J. Appl. Phys. 102, 104103 (2007)Google Scholar
  19. 19.
    R.A. McKee, F.J. Walker, M.F. Chisholm, Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014 (1998)Google Scholar
  20. 20.
    H. Li et al., Two-dimensional growth of high-quality strontium titanate thin films on Si. J. Appl. Phys. 93, 4521 (2003)Google Scholar
  21. 21.
    C. Rossel et al., SrHfO3 as gate dielectric for future CMOS technology. Microelectron. Eng. 84, 1869 (2007)Google Scholar
  22. 22.
    C. Rossel et al., Field-effect transistors with SrHfO3 as gate oxide. Appl. Phys. Lett. 89, 053506 (2006)Google Scholar
  23. 23.
    T.F. Wietler et al., Epitaxial growth of Gd2O3 on Ge films grown by surfactant-mediated epitaxy on Si(001) substrates. Solid State Electron. 53, 833 (2009)Google Scholar
  24. 24.
    J. Wang et al., Crystal structure and strain state of molecular beam epitaxial grown Gd2O3 on Si(111) substrates: a diffraction study. Semicond. Sci. Tech. 24, 045021 (2009)Google Scholar
  25. 25.
    M.E. Hunter, M.J. Reed, N.A. El-Masry, J.C. Roberts, S.M. Bedair, Epitaxial Y2O3 films grown on Si(111) by pulsed-laser ablation. Appl. Phys. Lett. 76, 1935 (2000)Google Scholar
  26. 26.
    S. Guha, N.A. Bojarczuk, V. Narayanan, Lattice-matched, epitaxial, silicon-insulating lanthanum yttrium oxide heterostructures. Appl. Phys. Lett. 80, 766 (2002)Google Scholar
  27. 27.
    T. Schroeder et al., Structure and thickness-dependent lattice parameters of ultrathin epitaxial Pr2O3 films on Si(001). Appl. Phys. Lett. 85, 1229 (2004)Google Scholar
  28. 28.
    H.J. Osten et al., Molecular beam epitaxy of rare-earth oxides, in Rare earth Oxide Thin Films: Growth, Characterization, and Application, ed. by M. Fanciulli, G. Scarel (Springer, Berlin, 2005)Google Scholar
  29. 29.
    A. Fissel et al., Interface formation during molecular beam epitaxial growth of neodymium oxide on silicon. J. Appl. Phys. 99, 074105 (2006)Google Scholar
  30. 30.
    D.O. Klenov, L.F. Edge, D.G. Schlom, S. Stemmer, Extended defects in epitaxial Sc2O3 films grown on (111) Si. Appl. Phys. Lett. 86, 051901 (2005)Google Scholar
  31. 31.
    B.E. Park, S. Shouriki, E. Tokumitsu, H. Ishiwara, Fabrication of PbZrxTi1-xO3 films on Si structures using Y2O3 buffer layers. Jpn. J. Appl. Phys. 37, 5145 (1998)Google Scholar
  32. 32.
    H.N. Lee, Y.T. Kim, S.H. Choh, Characteristics of Pt/SrBi2Ta2O9/Y2O3/Si ferroelectric gate capacitors. J. Kor. Phys. Soc. 34, 454 (1999)Google Scholar
  33. 33.
    S. Imada, S. Shouriki, E. Tokumitsu, H. Ishiwara, Epitaxial growth of ferroelectric YMnO3 thin films on Si (111) substrates by molecular beam epitaxy. Jpn. J. Appl. Phys. 37, 6497 (1998)Google Scholar
  34. 34.
    V. Narayanan, S. Guha, N.A. Bojarczuk, F.R. Ross, Growth and characterization of epitaxial Si/(LaxY1-x)2O3/Si heterostructures. J. Appl. Phys. 93, 251 (2003)Google Scholar
  35. 35.
    A. Giussani, P. Zaumseil, O. Seifarth, P. Storck, T. Schroeder, A novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures. New J. Phys. 12, 093005 (2010)Google Scholar
  36. 36.
    A. Wilke et al., Complex interface and growth analysis of single crystalline epi-Si(111)/Y2O3/Pr2O3/Si(111) heterostructures: Strain engineering by oxide buffer control. Surf. Interface Anal. 43, 827 (2011)Google Scholar
  37. 37.
    L. Tarnawska et al., Single crystalline Sc2O3/Y2O3 heterostructures as novel engineered buffer approach for GaN integration on Si (111). J. Appl. Phys. 108, 063502 (2010)Google Scholar
  38. 38.
    W. Guo et al., Epitaxial ZnO films on (111) Si substrates with Sc2O3 buffer layers. Appl. Phys. Lett. 94, 122107 (2009)Google Scholar
  39. 39.
    Y.Y. Gomeniuk et al., Interface and bulk properties of high-k gadolinium and neodymium oxides on silicon, in Nanoscaled Semiconductor-on-Insulator Materials, Sensors and Devices, ed. by A.N. Nazarov, J.P. Raskin (TransTech, Zurich, 2011)Google Scholar
  40. 40.
    J.X. Wang et al., Epitaxial multi-component rare-earth oxide: a high-k material with ultralow mismatch to Si. Mater. Lett. 64, 866 (2010)Google Scholar
  41. 41.
    A. Laha, E. Bugiel, H.J. Osten, A. Fissel, Crystalline ternary rare earth oxide with capacitance equivalent thickness below 1 nm for high-K application. Appl. Phys. Lett. 88, 172107 (2006)Google Scholar
  42. 42.
    E.J. Tarsa, J.S. Speck, M. Robinson, Pulsed laser deposition of epitaxial silicon/h-Pr2O3/silicon heterostructures. Appl. Phys. Lett. 63, 539 (1993)Google Scholar
  43. 43.
    H.J. Osten, J.P. Liu, E. Bugiel, H.J. Mussig, P. Zaumseil, Epitaxial growth of praseodymium oxide on silicon. Mater. Sci. Eng. B 87, 297 (2001)Google Scholar
  44. 44.
    M. Yoshimoto et al., Room-temperature epitaxial growth of CeO2 thin films on Si(111) substrates for fabrication of sharp oxide/silicon interface. Jpn. J. Appl. Phys. 34, L668 (1995)Google Scholar
  45. 45.
    H. Koinuma, H. Nagata, T. Tsukahara, S. Gonda, M. Yoshimoto, Ceramic layer epitaxy by pulsed laser deposition in an ultrahigh vacuum system. Appl. Phys. Lett. 58, 2027 (1991)Google Scholar
  46. 46.
    D.K. Fork, D.B. Fenner, T.H. Geballe, Growth of epitaxial PrO2 thin films on hydrogen-terminated Si(111) by pulsed laser deposition. J. Appl. Phys. 68, 4316 (1990)Google Scholar
  47. 47.
    J.W. Seo et al., Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si. Appl. Phys. Lett. 83, 5211 (2003)Google Scholar
  48. 48.
    D. Dimos, C.H. Mueller, Annu. Rev. Mater. Sci. 28(1), 397 (1998)Google Scholar
  49. 49.
    C.-R. Cho, J.-Y. Hwang, J.-P. Kim, S.-Y. Jeong, S.-G. Yoon, W.-J. Lee, Jpn. J. Appl. Phys. 43, L1425 (2004)Google Scholar
  50. 50.
    M.D. Losego, L. Fitting Kourkoutis, S. Mita, H.S. Craft, D.A. Muller, R. Collazo, Z. Sitar, J.-P. Maria, J. Cryst. Growth 311, 1106 (2009)Google Scholar
  51. 51.
    A. Posadas, J.-B. Yau, C.H. Ahn, J. Han, S. Gariglio, K. Johnston, K.M. Rabe, J.B. Neaton, Appl. Phys. Lett. 87, 171915 (2005)Google Scholar
  52. 52.
    A. Posadas, J.-B. Yau, C.H. Ahn, Phys. Status Solidi B 243, 2085 (2006)Google Scholar
  53. 53.
    Y. Chye, T. Liu, D. Li, K. Lee, D. Lederman, T.H. Myers, Appl. Phys. Lett. 88, 132903 (2006)Google Scholar
  54. 54.
    N. Sai, J. Lee, C.J. Fennie, A.A. Demkov, Appl. Phys. Lett. 91, 202910 (2007)Google Scholar
  55. 55.
    P.J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U.K. Mishra, R.A. York, D.G. Schlom, J.S. Speck, J. Vac. Sci. Tech. B 23, 499 (2005)Google Scholar
  56. 56.
    W. Tian, V. Vaithyanathan, D.G. Schlom, Q. Zhan, S.Y. Yang, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 172908 (2007)Google Scholar
  57. 57.
    S.-H. Lee, T.W. Noh, Integr. Ferroelectr. 20, 25 (1998)Google Scholar
  58. 58.
    Y. Tsuchiya, A. Kobayashi, J. Ohta, H. Fujioka, M. Oshima, Phys. Status Solidi A 202, R145 (2005)Google Scholar
  59. 59.
    P.J. Hansen, Y. Terao, Y. Wu, R.A. York, U.K. Mishra, J.S. Speck, J. Vac. Sci. Tech. B 23, 162 (2005)Google Scholar
  60. 60.
    L. Hao, J. Zhu, Y. Liu, S. Wang, H. Zeng, X. Liao, Y. Liu, H. Lei, Y. Zhang, W. Zhang, Y. Li, Thin Solid Films 520, 3035 (2012)Google Scholar
  61. 61.
    H.S. Craft, J.F. Ihlefeld, M.D. Losego, R. Collazo, Z. Sitar, J.-P. Maria, Appl. Phys. Lett. 88, 212906 (2006)Google Scholar
  62. 62.
    V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)Google Scholar
  63. 63.
    E.A. Paisley, T.C. Shelton, S. Mita, R. Collazo, H.M. Christen, Z. Sitar, M.D. Biegalski, J.-P. Maria, Appl. Phys. Lett. 101, 092904 (2012)Google Scholar
  64. 64.
    E.A. Paisley, M.D. Losego, B.E. Gaddy, J.S. Tweedie, R. Collazo, Z. Sitar, D.L. Irving, J.-P. Maria, Nat. Commun. 2, 461 (2011)Google Scholar
  65. 65.
    M.D. Losego, S. Mita, R. Collazo, Z. Sitar, J.-P. Maria, J. Cryst. Growth 310, 51 (2008)Google Scholar
  66. 66.
    A. Schmehl, V. Vaithyanathan, A. Herrnberger, S. Thiel, C. Richter, M. Liberati, T. Heeg, M. Röckerath, L.F. Kourkoutis, S. Mühlbauer, P. Böni, D.A. Muller, Y. Barash, J. Schubert, Y. Idzerda, J. Mannhart, D.G. Schlom, Nat. Mater. 6, 882 (2007)Google Scholar
  67. 67.
    W.A. Doolittle, A.G. Carver, W. Henderson, J. Vac. Sci. Tech. B 23, 1272 (2005)Google Scholar
  68. 68.
    J.D. Greenlee, W.L. Calley, W. Henderson, W.A. Doolittle, Phys. Status Solidi C 9, 155 (2012)Google Scholar
  69. 69.
    T.L. Goodrich, Z. Cai, M.D. Losego, J.-P. Maria, K.S. Ziemer, J. Vac. Sci. Tech. B 25, 1033 (2007)Google Scholar
  70. 70.
    T.L. Goodrich, J. Parisi, Z. Cai, K.S. Ziemer, Appl. Phys. Lett. 90, 042910 (2007)Google Scholar
  71. 71.
    A. Posadas, F.J. Walker, C.H. Ahn, T.L. Goodrich, Z. Cai, K.S. Ziemer, Appl. Phys. Lett. 92, 233511 (2008)Google Scholar
  72. 72.
    T.L. Goodrich, Z. Cai, M.D. Losego, J.-P. Maria, L. Fitting Kourkoutis, D.A. Muller, K.S. Ziemer, J. Vac. Sci. Tech. B 26, 1110 (2008)Google Scholar
  73. 73.
    Z. Cai, T.L. Goodrich, B. Sun, Z. Chen, V.G. Harris, K.S. Ziemer, J. Phys. D: Appl. Phys. 43, 095002 (2010)Google Scholar
  74. 74.
    T.L. Goodrich, Z. Cai, K.S. Ziemer, Appl. Surf. Sci. 254, 3191 (2008)Google Scholar
  75. 75.
    Z. Chen, A. Yang, Z. Cai, K. Ziemer, C. Vittoria, V.G. Harris, IEEE Trans. Magn. 42, 2855 (2006)Google Scholar
  76. 76.
    Z. Chen, Z. Cai, A. Yang, K.S. Ziemer, C. Vittoria, V.G. Harris, J. Appl. Phys. 103, 07E513 (2008)Google Scholar
  77. 77.
    Z. Chen, A. Yang, S.D. Yoon, K. Ziemer, C. Vittoria, V.G. Harris, J. Magn. Magn. Mater. 301, 166 (2006)Google Scholar
  78. 78.
    V.K. Lazarov, P.J. Hasnip, Z. Cai, K. Yoshida, K.S. Ziemer, J. Appl. Phys. 111, 07A515 (2012)Google Scholar
  79. 79.
    Z. Chen, V.G. Harris, J. Appl. Phys. 112, 081101 (2012)Google Scholar
  80. 80.
    R.A. McKee, F.J. Walker, M.F. Chisholm, Science 293, 468 (2001)Google Scholar
  81. 81.
    C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, M. Caymax, Appl. Phys. Lett. 98, 092901 (2011)Google Scholar
  82. 82.
    B.R. Lukanov, J.W. Reiner, F.J. Walker, C.H. Ahn, E.I. Altman, Phys. Rev. B 84, 075330 (2011)Google Scholar
  83. 83.
    D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List, Science 274, 755 (1996)Google Scholar
  84. 84.
    D.P. Norton, J.D. Budai, M.F. Chisholm, Appl. Phys. Lett. 76, 1677 (2000)Google Scholar
  85. 85.
    M. Patel, K. Kim, M. Ivill, J.D. Budai, D.P. Norton, Thin Solid Films 468, 1 (2004)Google Scholar
  86. 86.
    G. Hollinger, R. Skheyta-Kabbani, M. Gendry, Phys. Rev. B 49, 11159 (1994)Google Scholar
  87. 87.
    P.D. Kirchner, J.M. Woodall, J.L. Freeouf, G.D. Pettit, Appl. Phys. Lett. 38, 427 (1981)Google Scholar
  88. 88.
    K. Nashimoto, D.K. Fork, T.H. Geballe, Appl. Phys. Lett. 60, 1199 (1992)Google Scholar
  89. 89.
    L.S. Hung, L.R. Zheng, T.N. Blanton, Appl. Phys. Lett. 60, 3129 (1992)Google Scholar
  90. 90.
    E.J. Tarsa, M. De Graef, D.R. Clarke, A.C. Gossard, J.S. Speck, J. Appl. Phys. 73, 3276 (1993)Google Scholar
  91. 91.
    Y. Liang, J. Kulik, T.C. Eschrich, R. Droopad, Z. Yu, P. Maniar, Appl. Phys. Lett. 85, 1217 (2004)Google Scholar
  92. 92.
    R. Contreras-Guerrero, J.P. Veazey, J. Levy, R. Droopad, Appl. Phys. Lett. 102, 012907 (2013)Google Scholar
  93. 93.
    M. Ivill, M. Patel, K. Kim, H. Bae, S.J. Pearton, D.P. Norton, J.D. Budai, Appl. Phys. Mater. Sci. Process. 75, 699 (2002)Google Scholar
  94. 94.
    E. Vasco, L. Vázquez, M. Aguiló, C. Zaldo, J. Cryst. Growth 209, 883 (2000)Google Scholar
  95. 95.
    E. Vasco, C. Polop, C. Coya, A. Kling, C. Zaldo, Appl. Surf. Sci. 208–209, 512 (2003)Google Scholar
  96. 96.
    K. Eisenbeiser, R. Emrick, R. Droopad, Z. Yu, J. Finder, S. Rockwell, J. Holmes, C. Overgaard, W. Ooms, IEEE Electron. Dev. Lett. 23, 300 (2002)Google Scholar
  97. 97.
    A.A. Demkov, H. Seo, X. Zhang, J. Ramdani, Appl. Phys. Lett. 100, 071602 (2012)Google Scholar
  98. 98.
    L. Largeau, J. Cheng, P. Regreny, G. Patriarche, A. Benamrouche, Y. Robach, M. Gendry, G. Hollinger, G. Saint-Girons, Crystal orientation of GaAs islands grown on SrTiO3(001) by molecular beam epitaxy. Appl. Phys. Lett. 95, 011907 (2009)Google Scholar
  99. 99.
    J. Cheng, A. Chettaoui, J. Penuelas, B. Gobaut, P. Regreny, A. Benamrouche, Y. Robach, G. Hollinger, G. Saint-Girons, Partial arsenic pressure and crystal orientation during the molecular beam epitaxy of GaAs on SrTiO3(001). J. Appl. Phys. 107, 094902 (2010)Google Scholar
  100. 100.
    A. Fissel, D. Kühne, E. Bugiel, H.J. Osten, Appl. Phys. Lett. 88, 153105 (2006)Google Scholar
  101. 101.
    R. Dargis, A. Fissel, D. Schwendt, E. Bugiel, J. Krügener, T. Wietler, A. Laha, H.J. Osten, Vacuum 85, 523 (2010)Google Scholar
  102. 102.
    R. Dargis, E. Arkun, A. Clark, R. Roucka, R. Smith, D. Williams, M. Lebby, A.A. Demkov, J. Vac. Sci. Tech. B 30, 02B110 (2012)Google Scholar
  103. 103.
    A. Laha, E. Bugiel, R. Dargis, D. Schwendt, M. Badylevich, V.V. Afanas’ev, A. Stesmans, A. Fissel, H.J. Osten, Microelectron. J. 40, 633 (2009)Google Scholar
  104. 104.
    A. Laha, E. Bugiel, A. Fissel, H.J. Osten, Microelectron. Eng. 85, 2350 (2008)Google Scholar
  105. 105.
    R. Dargis, A. Clark, E. Arkun, R. Roucka, D. Williams, R. Smith, M. Lebby, ECS J. Solid. State. Sci. Tech. 1, P246 (2012)Google Scholar
  106. 106.
    J. Cheng, P. Regreny, L. Largeau, G. Patriarche, O. Mauguin, K. Naji, G. Hollinger, G. Saint-Girons, Influence of the surface reconstruction on the growth of InP on SrTiO3(001). J. Cryst. Growth 311, 1042 (2009)Google Scholar
  107. 107.
    K. Johnston, M.R. Castell, A.T. Paxton, M.W. Finnis, Phys. Rev. B 70, 085415 (2004)Google Scholar
  108. 108.
    J. Cheng, T. Aviles, A. El-Akra, C. Bru-Chevallier, L. Largeau, G. Patriarche, P. Regreny, A. Benamrouche, Y. Robach, G. Hollinger, G. Saint-Girons, Optically active defects in an InAsP/InP quantum well monolithically grown on SrTiO3/Si(001). Appl. Phys. Lett. 95, 232116 (2009)Google Scholar
  109. 109.
    G. Saint-Girons, C. Priester, P. Regreny, G. Patriarche, L. Largeau, V. Favre-Nicolin, G. Xu, Y. Robach, M. Gendry, G. Hollinger, Spontaneous compliance of the InP/SrTiO3 heterointerface. Appl. Phys. Lett. 92, 241907 (2008)Google Scholar
  110. 110.
    B. Gobaut, J. Penuelas, J. Cheng, A. Chettaoui, L. Largeau, G. Hollinger, G. Saint-Girons, Direct growth of InAsP/InP quantum well heterostructures on Si using crystalline SrTiO3/Si templates. Appl. Phys. Lett. 97, 201908 (2010)Google Scholar
  111. 111.
    M. El Kazzi, B. Gobaut, J. Penuelas, G. Grenet, M.G. Silly, F. Sirotti, G. Saint-Girons, Ge/SrTiO3(001) interface probed by soft x-ray synchrotron-radiation time-resolved photoemission. Phys. Rev. B 85, 075317 (2012)Google Scholar
  112. 112.
    B. Gobaut, J. Penuelas, G. Grenet, D. Ferrah, A. Benamrouche, A. Chettaoui, Y. Robach, C. Botella, M. El Kazzi, M.G. Silly, F. Sirotti, G. Saint-Girons, Ge/SrTiO3(001): correlation between interface chemistry and crystallographic orientation. J. Appl. Phys. 112, 093508 (2012)Google Scholar
  113. 113.
    J.W. Seo, C. Dieker, A. Tapponnier, C. Marchiori, M. Sousa, J.-P. Locquet, J. Fompeyrine, A. Ispas, C. Rossel, Y. Panayiotatos, A. Sotiropoulos, A. Dimoulas, Microelectron. Eng. 84, 2328 (2007)Google Scholar
  114. 114.
    G. Saint-Girons, P. Regreny, L. Largeau, G. Patriarche, G. Hollinger, Monolithic integration of InP based heterostructures on silicon using crystalline Gd2O3 buffers. Appl. Phys. Lett. 91, 241912 (2007)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Alexander A. Demkov
    • 1
  • Agham B. Posadas
    • 1
  1. 1.Department of PhysicsThe University of Texas at AustinAustinUSA

Personalised recommendations