Skip to main content

Abstract

The geometry of interconnections used in current electronic systems is described, and issues related to the reflow process that melts and re-solidifies the solder to make the interconnection are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oxford Dictionary, Oxford University Publisher, 2010.

    Google Scholar 

  2. Merriam-Webster Dictionary, Merriam-Webster, 11th edition, 2003.

    Google Scholar 

  3. US Code of Federal Regulations 47 CFR 51.5, 2011.

    Google Scholar 

  4. S. L. Khoury, D. J. Burkhard, D. P. Galloway, and T.A.Scharr, A Comparison of Copper and Gold Wire Bonding on Integrated Circuit Devices, IEEE Trans. On Components, Hybrids, and manufacturing tech., vol.13 (4), pp. 673–681, 1990.

    Google Scholar 

  5. P. Chauhan, Z. W. Zhong, M. Pecht, Copper Wire Bonding Concerns and Best Practices, Journal of Electronic Materials, Volume 42, Issue 8, pp. 2415–2434, August 2013.

    Google Scholar 

  6. L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C.M. Huang, Y. P. Wang, Silver alloy wire bonding, IEEE 62nd Electronic Components and Technology Conference (ECTC), pp. 1163–1168 , 2012.

    Google Scholar 

  7. C. Coombs, Printed Circuits Handbook, McGraw-Hill Professional, 6th edition, August 29, 2007.

    Google Scholar 

  8. IPC-T-50G, Terms and Definitions for Interconnecting and Packaging Electronic Circuits, 2013.

    Google Scholar 

  9. C. Harper, Electronic Materials and Processes Handbook, Chapter 7, McGraw-Hill Professional, 3rd edition, August 7, 2003.

    Google Scholar 

  10. M. Abtew, G. Selvaduray, Lead Free Solders in Microelectronics, Material Science and Engineering, V27, pp 95–141, 2000.

    Google Scholar 

  11. Y. Zhang, Tin and Tin alloys for lead-free solder, Modern Electroplating, John Wiley & Sons, Inc. 2010.

    Google Scholar 

  12. P. T. Vianco, D. R. Frear, Issue in the replacement of lead-bearing solders, Journal of Materials, vol 23,no 7, pp.14-19, 1993.

    Google Scholar 

  13. W. Hampshire, Solders in Electronic Materials Handbook, V. 1, Packaging, ASM International, Metals Park, pp 633–642,1989

    Google Scholar 

  14. K. J. Puttlitz, K. A. Stalter , Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, Technology & Engineering, 2004.

    Google Scholar 

  15. J. W. Evans, A guide to lead-free solder, Springer London, pp.1-22, 2007.

    Google Scholar 

  16. D. Shangguan, Leading the Lead-free transition, Circuits Assembly, March, 2004

    Google Scholar 

  17. D. Shangguan, Understanding compatibility and clarifying issues in Lead-free transition, Electronics Manufacturing China, pp.20-24, April, 2004.

    Google Scholar 

  18. D. Shangguan, A. Achari, Evaluation of Lead-free eutectic Sn-Ag solder for automotive electronics packaging applications, Proceedings of the International Electronics Manufacturing Technology Symposium, pp.25-37, Sep.1994.

    Google Scholar 

  19. D. Shangguan, A. Achari, Lead-free solder development for automotive electronics packaging applications, Proceedings of the Surface Mount International Conference, pp.25-37. Sep.,1994.

    Google Scholar 

  20. J. S. Hwang, Environment-friendly electronics: Lead-free technology, Electrochemical Publications Ltd., 2001.

    Google Scholar 

  21. J. Lau, C.P. Wong, N.C. Lee, S.W.R. Lee, Electronics manufacturing with Lead-free, halogen-free and Conductive Adhesive Materials, McGraw-Hill, 2003.

    Google Scholar 

  22. S. Ganesan, M. Pecht, Lead-free electronics, CALCE EPSC Press, 2003.

    Google Scholar 

  23. Y. Kariya, and M. Otsuka, Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5 mass% Ag Alloy, Journal of Electronic Materials, Volume 27, Issue 7, pp 866–870, 1998.

    Article  Google Scholar 

  24. J. S. Hwang, An Overview of Lead-Free Solders for Electronic and Microelectronics, Proc. of Surface Mount International, IPC, pp 405–421, 1994.

    Google Scholar 

  25. C. M. Miller, I. E. Anderson, J. F. Smith, A viable Sn-Pb solder substitute: Sn-Ag-Cu, Journal of Electronic Materials, Vol. 23, No.7, pp.595-601, 1994.

    Google Scholar 

  26. M.E. Loomans, M.E. Fine, Tin-Silver-Copper Eutectic Temperature and Composition, Metall. Mater. Trans. A, Vol.31, pp. 1155–1162, 2000.

    Google Scholar 

  27. I. E. Anderson, Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications, Lead-free electronic Solders, Spring US, pp.55-76, 2007.

    Google Scholar 

  28. I. E. Anderson, J. C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, O. Unal, Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability, Journal of Electronics Materials, Vol. 30, No. 9, pp.1050-1059, 2001.

    Google Scholar 

  29. C.Y. Yu, T.K. Lee, M. Tsai, K.C. Liu, J. G. Duh, Effects of Minor Ni Doping on Microstructural Variations and Interfacial Reactions in Cu/Sn-3.0Ag-0.5Cu-xNi/Au/Ni Sandwich Structures, Journal of Electronics Materials, Vol.39, No.12, pp.2544-2552, 2010.

    Google Scholar 

  30. T. Laurila, J. Hurtig, V. Vuorinen, J. K. Kivilahti, Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn–Cu intermetallic compound layers, Microelectronics Reliability, Vol. 49, pp. 242–247, 2009.

    Google Scholar 

  31. K.S. Kim, S.H. Huh, K. Suganuma, Effects of fourth alloying additive on microstructures and tensile properties of Sn–Ag–Cu alloy and joints with Cu, Microelectronics Reliability, Vol. 43, pp. 259–267, 2003.

    Article  Google Scholar 

  32. L. L. Gao, S. B. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai, S.L. Yu, Guang Zeng, Effect of alloying elements on properties and microstructures of SnAgCu solders, Microelectronic Engineering, Vol. 87, pp. 2025–2034, 2010.

    Article  Google Scholar 

  33. J. Y. Park, R. Kabade, C. U. Kim, T. Carper, S. Dunford, and V. Puligandla, Influence of Au Addition on the Phase Equilibria of Near-Eutectic Sn-3.8Ag-0.7Cu Pb-Free Solder Alloy, Journal of ELECTRONIC MATERIALS, Vol. 32, No. 12, pp. 1474–1482, 2003.

    Article  Google Scholar 

  34. C. M. Chuang, K. L. Lin, Effect of Microelements Addition on the Interfacial Reaction between Sn-Ag-Cu Solders and the Cu Substrate, Journal of ELECTRONIC MATERIALS, Vol. 32, No. 12, pp.1426-1431, 2003.

    Google Scholar 

  35. H. X. Xie, L. Jiang, N. Chawla, Effect of cerium addition on wetting, undercooling, and mechanical properties of Sn-3.9Ag-0.7Cu Pb-free solder alloys, Journal of Materials Science: Materials Electron, Vol.24, pp.3456–3466, 2013.

    Google Scholar 

  36. D. H. Kim, M. G. Cho, H. M. Lee, S. K. Seo, Effects of Co Addition on Bulk Properties of Sn-3.5Ag Solder and Interfacial Reactions with Ni-P UBM, Journal of ELECTRONIC MATERIALS, Vol. 38, No. 1, p39-45, 2009.

    Google Scholar 

  37. Y. Kariya, M. Otsuka, Mechanical fatigue characteristics of Sn-3.5Ag-X (X = Bi, Cu, Zn and In) solder alloys, Journal of Electronic Materials, Volume 27, Issue 11, pp.1229-1235, 1998.

    Google Scholar 

  38. T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola, J.K. Kivilahti, “Evolution of microstructure and failure mechanism of lead-free solder interconnections in power cycling and thermal shock tests”, Microelectronics Reliability, V.47, pp. 1135–1144, 2007.

    Google Scholar 

  39. T. K. Lee, W.D. Xie, K. C. Liu, Impact of Isothermal Aging on High G Mechanical Shock Performance Sn-Ag-Cu Solder Interconnect Board Level, 61st Electronic Components and Technology Conference, pp.547-552, 2011.

    Google Scholar 

  40. J. Karppinen, J. Li, J. Pakarinen, T. T. Mattila, M. P. Kröckel, Shock impact reliability characterization of a handheld product in accelerated tests and use environment, Microelectronics Reliability, Vol. 52, pp. 190–198, 2012.

    Article  Google Scholar 

  41. C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions, Materials Science and Engineering R, Vol. 44, pp. 1–44, 2004.

    Article  Google Scholar 

  42. C. M. L. Wu, M. L. Huang, J. K. L. Lai, Y.C. Chan, Developing a Lead-free Solder Alloy Sn-Bi-Ag-Cu by Mechanical Alloying, Journal of Electronic Materials, Vol.29 (8), pp.1015–1020, 2000.

    Google Scholar 

  43. K. S. Kim, K. Suganuma, Development of new Sn-Ag-Cu lead-free solders containing fourth elements, Proceedings of EnDesign 2003: Third international Symposium on Environmentally Conscious Design and Inverse Manufacturing , Japan, 2003.

    Google Scholar 

  44. K. K. Xiang, A. S. M. A. Haseeb, M. M. Arafat, Y. X.,Goh Effects of Mn nanoparticles on wettability and intermetallic compounds in between Sn-3.8Ag-0.7Cu and Cu substrate during multiple reflow, 4th Asia Symposium on Quality Electronic Design, pp.297-301, 2012.

    Google Scholar 

  45. C. E. Ho, W. Gierlotka, S.W. Lin, Strong effect of Pd concentration on the soldering reaction between Ni and Sn–Pd alloys, J. Mater. Res., Vol. 25, No. 11, pp.2078-2081, Nov 2010.

    Google Scholar 

  46. R. W. Chuang, D.W. Kim, J. Park, C.C. Lee, A fluxless process of producing tin-rich gold-tin joints in air, IEEE Transactions on Components and Packaging Technologies, Vol.4, pp. 177–181, 2004,

    Google Scholar 

  47. N.C.Lee, Soldering technology for area array packages, http://www.smtnet.com/express/200005/soldering/soldering.pdf, 1999.

  48. T. Zhou, T. Bobal, M. Oud, S. L. Jia, Au/Sn Solder Alloy and Its Applications in Electronics Packaging, http://www.coininginc.com/files/admin/english_gold_tin_paper.pdf, 1999.

  49. S. Anhock, H. Oppermann, R. Aschenbrenner, Investigations of Au-Sn alloys on different end-metallizations for high temperature applications, 22nd IEEE/CMPT International, pp.156-165, 1998.

    Google Scholar 

  50. K. Suganuma, S. Kim, K.S. Kim, High-temperature lead-free solders: Properties and possibilities, JOM, Vol. 61(1), pp. 64–71, 2009.

    Article  Google Scholar 

  51. R. K. Shiue, L.W. Tsay, C.L. Lin, J.L. Ou, A study of Sn-Bi-Ag-(In) lead-free solders, Journal of Material Science, Vol. 38(6), pp.1269-1279, 2003.

    Google Scholar 

  52. F. J. Wang, Z. S. Yu, K. Qi, Intermetallic compound formation at Sn–3.0Ag–0.5Cu–1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions, Journal of Alloys and Compounds, Vol.438(1–2), pp.110–115, 2007.

    Google Scholar 

  53. K. Suganuma, K. S. Kim, Sn-Zn low temperature solder, Springer, pp. 121–127, 2007.

    Google Scholar 

  54. J. Glazer, Metallurgy of low temperature Pb-free solders for electronic assembly, International Materials Reviews, Vol. 40 (2), pp. 65–93, 1995.

    Google Scholar 

  55. Z. Mei, J. W. Morris, Characterization of eutectic Sn-Bi solder joints, Journal of Electronic Materials, Vol. 21(6), pp 599–607, 1992.

    Article  Google Scholar 

  56. J. X. jiang, J. E. Lee, K. S. Kim, K. Suganuma, K. S. Kim, K. Suganuma, Oxidation behavior of Sn–Zn solders under high-temperature and high-humidity conditions, Journal of Alloys and Compounds, Vol. 462(1–2), pp. 244–251, 2008.

    Google Scholar 

  57. H. Ma, J. C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging, J Mater Sci., V44, pp. 1141–1158, 2009.

    Article  Google Scholar 

  58. P.T. Vianco, D. Shangguan, Fatigue and creep of lead-free solder alloys: fundamental properties, chapter 3, Leadfree solder interconnect reliability. ASM International, Materials Park, OH, p 67–106, 2006.

    Google Scholar 

  59. P. T. Vianco, J. A. Rejent, A. C. Kilgo, Journal of Electronic Materials, V.32(3), 142, 2003.

    Google Scholar 

  60. Q. Xiao, L. Nguyen W. D. Armstrong, Aging and creep behavior of Sn3.9Ag0.6Cu solder alloy, Proceedings of the 54th electronic components and technology conference, pp 1325–1332, 2004.

    Google Scholar 

  61. Q. Xiao, H. J. Bailey, W. D. Armstrong, Aging Effects on Microstructure and Mechanical Property of Sn3.9Ag0.6Cu Solder Alloy Journal of Electronic Packaging, V. 126(2), pp. 208–212, 2004.

    Google Scholar 

  62. L. Xu, J. H. L. Pang, Failure analysis of lead-free Sn-Ag-Cu solder joints for 316 I/O PBGA package, Proceeding of the 55th electronics packaging technology conference, pp 357–362, 2005.

    Google Scholar 

  63. K. J. Puttlitz, K. A. Stalter, Handbook of lead-free solder technology for microelectronic assemblies. Marcel Dekker, New York, 2004.

    Google Scholar 

  64. O. Fouassier, J-M. Heintz, J. Chazelas, P-M. Geffroy, J-F. Silvaina, Microstructural evolution and mechanical properties of SnAgCu alloys, Journal of Applied Physics, V. 100(1), 2006.

    Google Scholar 

  65. J. H. L. Pang, B. S. Xiong, Mechanical Properties for 95.5Sn–3.8Ag–0.7Cu Lead-Free Solder Alloy, IEEE Transaction on Component Packaging Technologies, V28(4), pp.830-841, 2005.

    Google Scholar 

  66. S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel, Constitutive behavior of lead-free solders vs. lead-containing solders-experiments on bulk specimens and flip-chip joints, Proceeding of the 51st electronic components and technology conference, pp 890–902, 2001.

    Google Scholar 

  67. A. Schubert, H. Walter, R. Dudek, B. Michel, G. Lefranc, J. Otto, G. Mitic, Thermo-mechanical properties and creep deformation of lead-containing and lead-free solders, International symposium on advanced packaging materials, pp 129–134, 2011.

    Google Scholar 

  68. D. Li, C. Liu, P. Conway, Materials behavior and intermetallics characteristics in the reaction between SnAgCu and Sn-Pb solder alloys, Proceeding of the 54th electronic components and technology conference, pp 128–133, 2004.

    Google Scholar 

  69. J. K. Lin, A. De Silva D. Frear, Y. Guo, S. Hayes J. W.Jang, L. Li, D. Mitchell, B. Yeung, C. Zhang, Characterization of lead-free solders and under bump metallurgies for flip-chip package, IEEE Transaction on Component and Packaging Technologies, V.25(4), pp.300-306, 2002

    Google Scholar 

  70. M. R. Harrison, J. H. Vincent, H. A. H. Steen, Lead-free reflow soldering for electronics assembly, Soldering and Surface Mount Technology, V.13(3), pp.21-38, 2001

    Google Scholar 

  71. H. Rhee J. P. Lucas, K. N. Subramanian, Micromechanical characterization of thermo-mechanical fatigued lead-free solder joints, Journal of Material Science: Material Electronics, V.13, pp. 477–484, 2002.

    Google Scholar 

  72. S. L. Allen, M. R. Notis, R. R. Chromik, R. P. Vinci, Microstructural evolution in lead0free solder alloys: Part I. Cast Sn-Ag-Cu eutectic, Journal of Materials Research, V.19, pp.1417-1424, 2004.

    Google Scholar 

  73. L. Allen, M. R. Notis, R. R. Chromik, R. P. Vinci, D.J. Lewis, R. Schaefer, Microstructural evolution in lead-free solder alloys. Part II: Directionally solidified eutectic Sn-Ag-Cu, Sn-Cu and Sn-Ag alloys, Journal of Materials Research, V.19, 1425–1433, 2004.

    Google Scholar 

  74. L. Xiao, J. Liu, A. Lai, L.Ye, A.Tholen, Characterization of mechanical properties of bulk lead-free solders, International symposium on advanced packaging materials, pp 145–151, 2000.

    Google Scholar 

  75. C. Kanchanomai, Y. Miyashita, Y. Mutoh, Low cycle fatigue behavior of Sn-Ag, Sn-AgCu and Sn-Ag-Cu-Bi lead-free solders, Journal of Electronic Material, V.31, pp. 456–457, 2002.

    Google Scholar 

  76. F. Zhu, Z. Wang, R. Guan, H., Zhang, 2005 International Conference on Asian Green Electronics, pp 107–112, 2005.

    Google Scholar 

  77. J., Madeni, S., Liu, T., Siewert, Casting of lead-free solder bulk specimens with various solidification rates, NIST Pb-free data. Available at: http://www.boulder.nist.gov/, 2002.

  78. M. H. Biglari, M. Oddy, M. A. Oud, P. Davis, Pb-Free Solders Based on SnAgCu, SnAgBi, SnCu and SnCu for Wave Soldering of Electronic Assemblies, Proceeding of electronics goes green 2000? conference, pp 73–82, 2000.

    Google Scholar 

  79. K. Seelig D. Suraski, The status of lead-free solder alloys, Proceeding of the 50th electronic components and technology conference, pp 1405–1409, 2000.

    Google Scholar 

  80. N. F. Enke, T. J. Kilinski, S. A. Schroeder, J. R. Lesniak, Mechanical Behaviors of 60/40 Tin-lead Solder Lap Joints, IEEE Transactions on Component and Hybrids Manufacturing Technology, Vol. 12 (4), pp.459-468, 1989.

    Google Scholar 

  81. R. J. McCabe and M. E. Fine, Athermal and thermally activated plastic flow in low melting temperature solders at small stresses, Scripta Mater. V.39(2), pp.189-192, 1998

    Google Scholar 

  82. J. H. Lau, Y.-H. Pao, Solder joint reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT assemblies. McGraw-Hill, New York, 1997.

    Google Scholar 

  83. Technical reports for the lead free solder project: properties reports: room temperature tensile properties of lead-free solder alloys. Lead free solder project CD-ROM, National Center for Manufacturing Sciences (NCMS), Available at: http://www.boulder.nist.gov/, 1998.

  84. J. H. Lau, C. Chang, S. W. R. Lee, T. Y. Chen, D. Cheng, T. J. Tseng, D. Lin, Thermal-Fatigue life of solder bumped Flip-chip on Micro via-in-pad (VIP) Low Cost Substrates, Proceeding of NEPCON-west 2000, pp 554–562, 2000.

    Google Scholar 

  85. D. Sigelko, K. N. Subramanian, Overview of lead-free solders, Advanced Materials Processing, V. 157(3), pp. 47–48, 2000.

    Google Scholar 

  86. R. Prasad, Surface Mount Technology: Principles and Practice, 2nd Edition, Springer, March 31, 1997.

    Google Scholar 

  87. M. S. Cindy Melton, The effect of reflow process variables on the wettability of lead-free solders, JOM, V. 45(7), pp 33–35, 1993.

    Google Scholar 

  88. K. N. Tu and R. D.Thompson, Kinetics of interfacial reaction in bimetallic Cu-Sn thin films, Acta Materialia 30 (1982) 947

    Google Scholar 

  89. T. Laurila, V. Vuorinen, and J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Materials Science and Engineering R, V.49, pp.1–60, 2005.

    Google Scholar 

  90. H. F. Zou, H. J. Yang, Z.F. Zhang, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals, Acta Materialia, V.56, pp.2649–2662, 2008.

    Google Scholar 

  91. D. Mu, H. Tsukamoto, H. Huang, K. Nogita, Formation and mechanical properties of intermetallic compounds in Sn-Cu High temperature lead free solder joints, Materials Science Forum, V.654-656, pp.2450-2454, 2010.

    Google Scholar 

  92. K. Nogita, D. Mu, S. D.McDonald, J. Read, Y. Q. Wu, Effect of Ni on phase stability and thermal expansion of Cu6-xNixSn5 (X = 0,0.5, 1, 1.5 and 2), Intermetallics, V.26, pp.78-85, 2012.

    Google Scholar 

  93. K. Zeng, K. N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Materials Science and Engineering R, V.38, pp.55—105, 2002.

    Google Scholar 

  94. P. Yao, J. Liu, Interfacial reaction and shear strength of SnAgCu-xNi/Ni solder joints during aging at 150 degrees C, Microelectronic Engineering, V.86, pp.1969–74, 2009.

    Google Scholar 

  95. U. Schwingenschlogl, C. Di Paola, K. Nogita and C.M. Gourlay, The influence of Ni additions on the relative stability of eta and eta’ Cu6Sn5, Applied Physics Letter, V. 96, 061908., 2010.

    Google Scholar 

  96. S.-W. Fu, C.-Y. Yu, T.-K. Lee, K.-C. Liu, J.-G. Duh, Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn–Ag–Cu/Ni solder joints, Materials Letters, V.80, pp.103-105, 2012.

    Google Scholar 

  97. P. Snugosky, P. Arrowsmith, M. Romansky, Electroless Ni/Immersion Au interconnects: Investigation of black pad in wire bonds and solder joints, Journal of Electronic Materials, V.30 (9), pp.1262–1270, 2001.

    Google Scholar 

  98. S. P. Peng, W. H. Wu, C. E. Ho, Y. M. Huang, Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni(P) tri-layer structure, Journal of Alloys and Compound, V. 493, pp.431–437, 2010.

    Google Scholar 

  99. T. Laurila, V. Vuorinen, M. Paulasto-Krockel, Impurity and alloying effects on interfacial reaction layers in Pb-free soldering, Material Science and Engineering R, Sci Eng R, V.68, pp.1–38, 2010.

    Google Scholar 

  100. C-F. Tseng, T-K. Lee, G. Ramakrishna, K-C. Liu, J-G. Duh, Suppressing Ni3Sn4 formation in the Sn–Ag–Cu solder joints with Ni–P/Pd/Au surface finish, Materials Letters, V. 65, 3216–3218, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, TK., Bieler, T.R., Kim, CU., Ma, H. (2015). Interconnection: The Joint. In: Fundamentals of Lead-Free Solder Interconnect Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9266-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9266-5_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-9265-8

  • Online ISBN: 978-1-4614-9266-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics