Skip to main content

The PI3K Signaling Pathway in Head and Neck Squamous Cell Carcinoma

  • Chapter
  • First Online:
Molecular Determinants of Head and Neck Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 943 Accesses

Abstract

The PI3K/PTEN/AKT/mTOR signaling axis has been intensively studied in many cancer systems. Current evidence suggests deregulation of this pathway plays a unique role in the initiation, development, and recurrence of head and neck squamous cell carcinoma (HNSCC). A heterogeneous disease by nature, HNSCC encompasses a disparate collection of anatomical sites with complex tumor biology. Yet, PI3K/PTEN/AKT/mTOR signaling has an intimate role in nearly every facet of this disease. In this chapter, we will provide a brief introduction to the mechanisms involved in PI3K/PTEN/AKT/mTOR signaling and how specific alterations in these signaling nodes enable HNSCC development. We will also discuss differences in PI3K/PTEN/AKT/mTOR signaling with respect to HPV status. A number of inhibitors targeting multiple nodes in this pathway have been developed as agents have broad application across many cancer types. We will briefly review how these therapeutic agents are being evaluated and what predictive biomarkers have been established in HNSCC for these drugs. Finally, PI3K/PTEN/AKT/mTOR signaling represents an important source of resistance to radiation, chemotherapy, and other targeted agents. We will also speculate on how PI3K/PTEN/AKT/mTOR inhibitors may increase the efficacy of these established therapies. Although PI3K/PTEN/AKT/mTOR investigations are relatively new to HNSCC research, early evidence suggests further evaluation of this essential signal transduction pathway is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedrero JM, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS, Gonzalez MV. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer. 2005;114(2):242–8. doi:10.1002/ijc.20711.

    PubMed  CAS  Google Scholar 

  2. Dhand R, Hiles I, Panayotou G, Roche S, Fry MJ, Gout I, Totty NF, Truong O, Vicendo P, Yonezawa K, et al. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 1994;13(3):522–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Foukas LC, Beeton CA, Jensen J, Phillips WA, Shepherd PR. Regulation of phosphoinositide 3-kinase by its intrinsic serine kinase activity in vivo. Mol Cell Biol. 2004;24(3):966–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Kang S, Denley A, Vanhaesebroeck B, Vogt PK. Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci U S A. 2006;103(5):1289–94. doi:0510772103 [pii]. 10.1073/pnas.0510772103.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell. 1991;65(1):83–90. doi:0092-8674(91)90410-Z [pii].

    PubMed  CAS  Google Scholar 

  6. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell. 1994;77(1):83–93. doi:0092-8674(94)90237-2 [pii].

    PubMed  CAS  Google Scholar 

  7. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370(6490):527–32. doi:10.1038/370527a0.

    PubMed  CAS  Google Scholar 

  8. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 1996;15(10):2442–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Chan TO, Rodeck U, Chan AM, Kimmelman AC, Rittenhouse SE, Panayotou G, Tsichlis PN. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell. 2002;1(2):181–91. doi:S1535610802000338 [pii].

    PubMed  CAS  Google Scholar 

  10. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261–9. doi:S0960-9822(06)00122-9 [pii].

    PubMed  CAS  Google Scholar 

  11. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.

    PubMed  CAS  Google Scholar 

  12. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39. doi:S0092-8674(00)81780-8 [pii].

    PubMed  CAS  Google Scholar 

  13. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. doi:10.1126/science.1096502. 1096502 [pii].

    PubMed  CAS  Google Scholar 

  14. Qiu W, Schonleben F, Li X, Ho DJ, Close LG, Manolidis S, Bennett BP, Su GH. PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(5):1441–6. doi:12/5/1441 [pii]. 10.1158/1078-0432.CCR-05-2173.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Murugan AK, Hong NT, Fukui Y, Munirajan AK, Tsuchida N. Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int J Oncol. 2008;32(1):101–11.

    PubMed  CAS  Google Scholar 

  16. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortes ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareno C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60. doi:science.1208130 [pii]. 10.1126/science.1208130.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, Zhang N, El-Naggar AK, Jasser SA, Weinstein JN, Trevino L, Drummond JA, Muzny DM, Wu Y, Wood LD, Hruban RH, Westra WH, Koch WM, Califano JA, Gibbs RA, Sidransky D, Vogelstein B, Velculescu VE, Papadopoulos N, Wheeler DA, Kinzler KW, Myers JN. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7. doi:science.1206923 [pii]. 10.1126/science.1206923.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science. 2007;318(5857):1744–8. doi:318/5857/1744 [pii]. 10.1126/science.1150799.

    PubMed  CAS  Google Scholar 

  19. Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007;317(5835):239–42. doi:317/5835/239 [pii]. 10.1126/science.1135394.

    PubMed  CAS  Google Scholar 

  20. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105(7):2652–7. doi:0712169105 [pii]. 10.1073/pnas.0712169105.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J, Ohta M, Jazag A, Guleng B, Tateishi K, Asaoka Y, Matsumura M, Kawabe T, Omata M. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res. 2005;65(11):4562–7. doi:65/11/4562 [pii]. 10.1158/0008-5472.CAN-04-4114.

    PubMed  CAS  Google Scholar 

  22. Gymnopoulos M, Elsliger MA, Vogt PK. Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci U S A. 2007;104(13):5569–74. doi:0701005104 [pii] 10.1073/pnas.0701005104.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Bigner SH, Mark J, Mahaley MS, Bigner DD. Patterns of the early, gross chromosomal changes in malignant human gliomas. Hereditas. 1984;101(1):103–13.

    PubMed  CAS  Google Scholar 

  24. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    PubMed  CAS  Google Scholar 

  25. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62. doi:10.1038/ng0497-356.

    PubMed  CAS  Google Scholar 

  26. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7. doi:10.1038/ng0597-64.

    PubMed  CAS  Google Scholar 

  27. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;96(4):1563–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten + /− mice. Science. 1999;285(5436):2122–5. doi:7853 [pii].

    PubMed  CAS  Google Scholar 

  29. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001;27(2):222–4. doi:10.1038/84879.

    PubMed  CAS  Google Scholar 

  30. Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell. 2007;128(2):383–97. doi:S0092-8674(07)00005-0 [pii]. 10.1016/j.cell.2006.11.051.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29. doi:S1534-5807(08)00209-8 [pii]. 10.1016/j.devcel.2008.05.009.

    PubMed  CAS  Google Scholar 

  32. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 2007;128(1):157–70. doi:S0092-8674(06)01553-4 [pii]. 10.1016/j.cell.2006.11.042.

    PubMed  CAS  Google Scholar 

  33. Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A, Lucocq J, Downes CP. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci. 2006;119(Pt 24):5160–8. doi:119/24/5160 [pii]. 10.1242/jcs.000133.

    PubMed  CAS  Google Scholar 

  34. Staal SP, Hartley JW, Rowe WP. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci U S A. 1977;74(7):3065–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991;254(5029):274–7.

    PubMed  CAS  Google Scholar 

  36. Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 1991;201(2):475–81.

    PubMed  CAS  Google Scholar 

  37. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A. 1991;88(10):4171–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Bellacosa A, Franke TF, Gonzalez-Portal ME, Datta K, Taguchi T, Gardner J, Cheng JQ, Testa JR, Tsichlis PN. Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene. 1993;8(3):745–54.

    PubMed  CAS  Google Scholar 

  39. Jones PF, Jakubowicz T, Hemmings BA. Molecular cloning of a second form of rac protein kinase. Cell Regul. 1991;2(12):1001–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Konishi H, Shinomura T, Kuroda S, Ono Y, Kikkawa U. Molecular cloning of rat RAC protein kinase alpha and beta and their association with protein kinase C zeta. Biochem Biophys Res Commun. 1994;205(1):817–25. doi:S0006-291X(84)72738-0 [pii]. 10.1006/bbrc.1994.2738.

    PubMed  CAS  Google Scholar 

  41. Nakatani K, Sakaue H, Thompson DA, Weigel RJ, Roth RA. Identification of a human Akt3 (protein kinase B gamma) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun. 1999;257(3):906–10. doi:S0006-291X(99)90559-4 [pii]. 10.1006/bbrc.1999.0559.

    PubMed  CAS  Google Scholar 

  42. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–74. doi:1133427 [pii]. 10.1126/science.1133427.

    PubMed  Google Scholar 

  43. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8. doi:nature05610 [pii]. 10.1038/nature05610.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001;292(5522):1728–31. doi:10.1126/science.292.5522.1728. 292/5522/1728 [pii].

    PubMed  CAS  Google Scholar 

  45. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem. 2001;276(42):38349–52. doi:10.1074/jbc.C100462200. C100462200 [pii].

    PubMed  CAS  Google Scholar 

  46. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001;15(17):2203–8. doi:10.1101/gad.913901.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, Lee VM, Szabolcs M, de Jong R, Oltersdorf T, Ludwig T, Efstratiadis A, Birnbaum MJ. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol. 2005;25(5):1869–78. doi:25/5/1869 [pii]. 10.1128/MCB.25.5.1869-1878.2005.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, Michaelis T, Frahm J, Hemmings BA. Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development. 2005;132(13):2943–54. doi:dev.01864 [pii]. 10.1242/dev.01864.

    PubMed  CAS  Google Scholar 

  49. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275(5300):665–8.

    PubMed  CAS  Google Scholar 

  50. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101. doi:307/5712/1098 [pii]. 10.1126/science.1106148.

    PubMed  CAS  Google Scholar 

  51. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, Lopez AS, Koomen J, Engelman RW, Rivera C, Muraoka-Cook RS, Cheng JQ, Schonbrunn E, Sebti SM, Earp HS, Mahajan NP. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS One. 2010;5(3):e9646. doi:10.1371/journal.pone.0009646.

    PubMed  PubMed Central  Google Scholar 

  53. Mahajan K, Mahajan NP. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol. 2010;224(2):327–33. doi:10.1002/jcp.22162.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Chen R, Kim O, Yang J, Sato K, Eisenmann KM, McCarthy J, Chen H, Qiu Y. Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem. 2001;276(34):31858–62. doi:10.1074/jbc.C100271200. C100271200 [pii].

    PubMed  CAS  Google Scholar 

  55. Zheng Y, Peng M, Wang Z, Asara JM, Tyner AL. Protein tyrosine kinase 6 directly phosphorylates AKT and promotes AKT activation in response to epidermal growth factor. Mol Cell Biol. 2010;30(17):4280–92. doi:MCB.00024-10 [pii]. 10.1128/MCB.00024-10.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Joung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY. Akt contributes to activation of the TRIF-dependent signaling pathways of TLRs by interacting with TANK-binding kinase 1. J Immunol. 2011;186(1):499–507. doi:jimmunol.0903534 [pii]. 10.4049/jimmunol.0903534.

    PubMed  CAS  Google Scholar 

  57. Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T, Tan SL, White MA. TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell. 2011;41(4):458–70. doi:S1097-2765(11)00046-3 [pii]. 10.1016/j.molcel.2011.01.019.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, Wang CY, Guan KL. IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci U S A. 2011;108(16):6474–9. doi:1016132108 [pii]. 10.1073/pnas.1016132108.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A. 2001;98(20):11598–603. doi:10.1073/pnas.181181198. 181181198.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3(3):245–52. doi:10.1038/35060032.

    PubMed  CAS  Google Scholar 

  61. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 2005;8(1):25–33. doi:S1535-6108(05)00193-5 [pii]. 10.1016/j.ccr.2005.06.005.

    PubMed  CAS  Google Scholar 

  63. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE, Roberts JM. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 2003;12(2):381–92. doi:S1097276503002879 [pii].

    PubMed  CAS  Google Scholar 

  64. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida T, Counter CM, Nevins JR, Means AR, Sears R. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol. 2004;6(4):308–18. doi:10.1038/ncb1110. ncb1110 [pii].

    PubMed  CAS  Google Scholar 

  65. Huang WC, Chen CC. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol. 2005;25(15):6592–602. doi:25/15/6592 [pii]. 10.1128/MCB.25.15.6592-6602.2005.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68. doi:S0092-8674(00)80595-4 [pii].

    PubMed  CAS  Google Scholar 

  67. Laine J, Kunstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell. 2000;6(2):395–407. doi:S1097-2765(00)00039-3 [pii].

    PubMed  CAS  Google Scholar 

  68. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S, Russo G, Tsichlis P, Croce CM. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci U S A. 2000;97(7):3028–33. doi:10.1073/pnas.040557697. 040557697 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM, Fala F, Cocco L, Martelli AM. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia. 2003;17(11):2157–67. doi:10.1038/sj.leu.2403111. 2403111 [pii].

    PubMed  CAS  Google Scholar 

  70. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J, Buerger H, Muller-Tidow C, Choudhary C, McMahon M, Berdel WE, Serve H. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res. 2005;65(21):9643–50. doi:65/21/9643 [pii]. 10.1158/0008-5472.CAN-05-0422.

    PubMed  CAS  Google Scholar 

  71. Lee SH, Kim HS, Park WS, Kim SY, Lee KY, Kim SH, Lee JY, Yoo NJ. Non-small cell lung cancers frequently express phosphorylated Akt; an immunohistochemical study. APMIS. 2002;110(7–8):587–92. doi:apm11007-811 [pii].

    PubMed  CAS  Google Scholar 

  72. Nicholson KM, Streuli CH, Anderson NG. Autocrine signalling through erbB receptors promotes constitutive activation of protein kinase B/Akt in breast cancer cell lines. Breast Cancer Res Treat. 2003;81(2):117–28. doi:10.1023/A:1025765215765.

    PubMed  CAS  Google Scholar 

  73. Vasko V, Saji M, Hardy E, Kruhlak M, Larin A, Savchenko V, Miyakawa M, Isozaki O, Murakami H, Tsushima T, Burman KD, De Micco C, Ringel MD. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet. 2004;41(3):161–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Van deST, Roskams T, Lerut E, Joniau S, Van Poppel H, Verhoeven G, Swinnen JV. High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB. J Pathol. 2005;206(2):214–9. doi:10.1002/path.1760.

    Google Scholar 

  75. Montironi R, Mazzuccheli R, Scarpelli M, Lopez-Beltran A, Fellegara G, Algaba F. Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: contemporary approach, current clinical significance and sources of pathology discrepancies. BJU Int. 2005;95(8):1146–52. doi:BJU5540 [pii]. 10.1111/j.1464-410X.2005.05540.x.

    PubMed  Google Scholar 

  76. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP. Identification of a tumour suppressor network opposing nuclear Akt function. Nature. 2006;441(7092):523–7. doi:nature04809 [pii]. 10.1038/nature04809.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O’Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zackai EH, Hoag K, Whitewood-Neal T, Robey PG, Schwartzberg PL, Darling TN, Tosi LL, Mullikin JC, Biesecker LG. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 2011;365(7):611–9. doi:10.1056/NEJMoa1104017.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Biesecker LG. The multifaceted challenges of Proteus syndrome. JAMA. 2001;285(17):2240–3. doi:jgn10000 [pii].

    PubMed  CAS  Google Scholar 

  79. Biesecker L. The challenges of Proteus syndrome: diagnosis and management. Eur J Hum Genet. 2006;14(11):1151–7. doi:5201638 [pii]. 10.1038/sj.ejhg.5201638.

    PubMed  Google Scholar 

  80. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448(7152):439–44. doi:nature05933 [pii]. 10.1038/nature05933.

    PubMed  CAS  Google Scholar 

  81. Askham JM, Platt F, Chambers PA, Snowden H, Taylor CF, Knowles MA. AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene. 2010;29(1):150–5. doi:onc2009315 [pii]. 10.1038/onc.2009.315.

    PubMed  CAS  Google Scholar 

  82. Cohen Y, Shalmon B, Korach J, Barshack I, Fridman E, Rechavi G. AKT1 pleckstrin homology domain E17K activating mutation in endometrial carcinoma. Gynecol Oncol. 2010;116(1):88–91. doi:S0090-8258(09)00737-9 [pii]. 10.1016/j.ygyno.2009.09.038.

    PubMed  CAS  Google Scholar 

  83. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89. doi:S0092867402008334 [pii].

    PubMed  CAS  Google Scholar 

  84. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75. doi:S0092867402008085 [pii].

    PubMed  CAS  Google Scholar 

  85. Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem. 2003;278(18):15461–4. doi:10.1074/jbc.C200665200. C200665200 [pii].

    PubMed  CAS  Google Scholar 

  86. Schalm SS, Fingar DC, Sabatini DM, Blenis J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol. 2003;13(10):797–806. doi:S0960982203003294 [pii].

    PubMed  CAS  Google Scholar 

  87. Wullschleger S, Loewith R, Oppliger W, Hall MN. Molecular organization of target of rapamycin complex 2. J Biol Chem. 2005;280(35):30697–704. doi:M505553200 [pii]. 10.1074/jbc.M505553200.

    PubMed  CAS  Google Scholar 

  88. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501. doi:1157535 [pii]. 10.1126/science.1157535.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405(3):513–22. doi:BJ20070540 [pii]. 10.1042/BJ20070540.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15. doi:S1097-2765(07)00148-7 [pii]. 10.1016/j.molcel.2007.03.003.

    PubMed  CAS  Google Scholar 

  91. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316–23. doi:ncb1547 [pii]. 10.1038/ncb1547.

    PubMed  CAS  Google Scholar 

  92. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302. doi:10.1016/j.cub.2004.06.054 S0960982204004713 [pii].

    PubMed  CAS  Google Scholar 

  93. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10(3):457–68. doi:S1097276502006366 [pii].

    PubMed  CAS  Google Scholar 

  94. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8. doi:ncb1183 [pii]. 10.1038/ncb1183.

    PubMed  CAS  Google Scholar 

  95. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997;272(42):26457–63.

    PubMed  CAS  Google Scholar 

  96. Ma XM, Yoon SO, Richardson CJ, Julich K, Blenis J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell. 2008;133(2):303–13. doi:S0092-8674(08)00282-1 [pii]. 10.1016/j.cell.2008.02.031.

    PubMed  CAS  Google Scholar 

  97. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80. doi:S0092-8674(05)01157-8 [pii]. 10.1016/j.cell.2005.10.024.

    PubMed  CAS  Google Scholar 

  98. Mayer C, Zhao J, Yuan X, Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 2004;18(4):423–34. doi:10.1101/gad.285504. 18/4/423 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998;273(7):3963–6.

    PubMed  CAS  Google Scholar 

  100. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023–32. doi:M900301200 [pii]. 10.1074/jbc.M900301200.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150(6):1507–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006;16(18):1865–70. doi:S0960-9822(06)01974-9 [pii]. 10.1016/j.cub.2006.08.001.

    PubMed  CAS  Google Scholar 

  103. Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev. 2006;20(20):2820–32. doi:20/20/2820 [pii]. 10.1101/gad.1461206.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 2008;27(14):1932–43. doi:10.1038/emboj.2008.120. emboj2008120 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416(3):375–85. doi:BJ20081668 [pii]. 10.1042/BJ20081668.

    PubMed  CAS  Google Scholar 

  106. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008;27(14):1919–31. doi:emboj2008119 [pii]. 10.1038/emboj.2008.119.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van denOA, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, Kwiatkowski DJ. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.

    PubMed  CAS  Google Scholar 

  108. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809–20. doi:10.1172/JCI20039. JCI200320039 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82. doi:10.1073/pnas.2436255100. 2436255100 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem. 2007;282(25):18573–83. doi:M701194200 [pii]. 10.1074/jbc.M701194200.

    PubMed  CAS  Google Scholar 

  111. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, Mullholland DJ, Magnuson MA, Wu H, Sabatini DM. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148–59. doi:S1535-6108(08)00436-4 [pii]. 10.1016/j.ccr.2008.12.017.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Hietakangas V, Cohen SM. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer. 2008;8:282. doi:1471-2407-8-282 [pii]. 10.1186/1471-2407-8-282.

    PubMed  PubMed Central  Google Scholar 

  113. Woenckhaus J, Steger K, Werner E, Fenic I, Gamerdinger U, Dreyer T, Stahl U. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol. 2002;198(3):335–42. doi:10.1002/path.1207.

    PubMed  CAS  Google Scholar 

  114. Suda T, Hama T, Kondo S, Yuza Y, Yosikawa M, Urashima M, Kato T, Moriyama H. Copy number amplification of the PIK3CA gene is associated with poor prognosis in non-lymph node metastatic head and neck squamous cell carcinoma. BMC Cancer. 2012;12(1):416. doi:1471-2407-12-416 [pii]. 10.1186/1471-2407-12-416.

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Tsui IF, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer. 2009;125(9):2219–28. doi:10.1002/ijc.24611.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Shao X, Tandon R, Samara G, Kanki H, Yano H, Close LG, Parsons R, Sato T. Mutational analysis of the PTEN gene in head and neck squamous cell carcinoma. Int J Cancer. 1998;77(5):684–688. doi:10.1002/(SICI)1097-0215(19980831)77:5 < 684::AID-IJC4 > 3.0.CO;2-R [pii].

    PubMed  CAS  Google Scholar 

  117. Lee JI, Soria JC, Hassan KA, El-Naggar AK, Tang X, Liu DD, Hong WK, Mao L. Loss of PTEN expression as a prognostic marker for tongue cancer. Arch Otolaryngol Head Neck Surg. 2001;127(12):1441–5. doi:ooa10112 [pii].

    PubMed  CAS  Google Scholar 

  118. Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q, Rank G, Srivastava S, Finlay MJ, Papenfuss AT, Pandolfi PP, Pearson RB, Jane SM. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell. 2011;20(5):635–48. doi:S1535-6108(11)00397-7 [pii]. 10.1016/j.ccr.2011.10.014.

    PubMed  CAS  Google Scholar 

  119. Minor J, Wang X, Zhang F, Song J, Jimeno A, Wang XJ, Lu X, Gross N, Kulesz-Martin M, Wang D, Lu SL. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol. 2012;48(1):73–8. doi:S1368-8375(11)00885-2 [pii]. 10.1016/j.oraloncology.2011.11.006.

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest. 2009;119(11):3408–19. doi:10.1172/JCI38854 38854 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM, Kulkarni AB. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res. 2009;69(14):5918–26. doi:0008-5472.CAN-08-4623 [pii]. 10.1158/0008-5472.CAN-08-4623.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, Waes CV, Kulkarni AB. Loss of TGF-beta signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene. 2011. doi:10.1038/onc.2011.494. onc2011494 [pii].

    Google Scholar 

  123. Sun ZJ, Zhang L, Hall B, Bian Y, Gutkind JS, Kulkarni AB. Chemopreventive and chemotherapeutic actions of mTOR inhibitor in genetically defined head and neck squamous cell carcinoma mouse model. Clin Cancer Res. 2012;18(19):5304–13. doi:1078-0432.CCR-12-1371 [pii]. 10.1158/1078-0432.CCR-12-1371.

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Martinez-Cruz AB, Santos M, Lara MF, Segrelles C, Ruiz S, Moral M, Lorz C, Garcia-Escudero R, Paramio JM. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors. Cancer Res. 2008;68(3):683–92. doi:68/3/683 [pii]. 10.1158/0008-5472.CAN-07-3049.

    PubMed  CAS  Google Scholar 

  125. Moral M, Segrelles C, Lara MF, Martinez-Cruz AB, Lorz C, Santos M, Garcia-Escudero R, Lu J, Kiguchi K, Buitrago A, Costa C, Saiz C, Rodriguez-Peralto JL, Martinez-Tello FJ, Rodriguez-Pinilla M, Sanchez-Cespedes M, Garin M, Grande T, Bravo A, DiGiovanni J, Paramio JM. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res. 2009;69(3):1099–108. doi:0008-5472.CAN-08-3240 [pii]. 10.1158/0008-5472.CAN-08-3240.

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, Gupta PC, Hackshaw A, Matos E, Samet J, Sitas F, Smith J, Stayner L, Straif K, Thun MJ, Wichmann HE, Wu AH, Zaridze D, Peto R, Doll R. Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst. 2004;96(2):99–106.

    PubMed  CAS  Google Scholar 

  127. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, Westra WH, Chung CH, Jordan RC, Lu C, Kim H, Axelrod R, Silverman CC, Redmond KP, Gillison ML. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35. doi:NEJMoa0912217 [pii]. 10.1056/NEJMoa0912217.

    PubMed  PubMed Central  CAS  Google Scholar 

  128. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest. 2003;111(1):81–90. doi:10.1172/JCI16147.

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Weber SM, Bornstein S, Li Y, Malkoski SP, Wang D, Rustgi AK, Kulesz-Martin MF, Wang XJ, Lu SL. Tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induces AKT activation in head and neck epithelia. Int J Oncol. 2011;39(5):1193–8. doi:10.3892/ijo.2011.1149.

    PubMed  PubMed Central  CAS  Google Scholar 

  130. An Y, Kiang A, Lopez JP, Kuo SZ, Yu MA, Abhold EL, Chen JS, Wang-Rodriguez J, Ongkeko WM. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population. PLoS One. 2012;7(11):e47919. doi:10.1371/journal.pone.0047919. PONE-D-11-06991 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Lin K, Patel SG, Chu PY, Matsuo JM, Singh B, Wong RJ, Kraus DH, Shaha AR, Shah JP, Boyle JO. Second primary malignancy of the aerodigestive tract in patients treated for cancer of the oral cavity and larynx. Head Neck. 2005;27(12):1042–8. doi:10.1002/hed.20272.

    PubMed  Google Scholar 

  132. Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, Schantz SP, Kramer AM, Lotan R, Peters LJ, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med. 1990;323(12):795–801. doi:10.1056/NEJM199009203231205.

    PubMed  CAS  Google Scholar 

  133. Benner SE, Pajak TF, Lippman SM, Earley C, Hong WK. Prevention of second primary tumors with isotretinoin in patients with squamous cell carcinoma of the head and neck: long-term follow-up. J Natl Cancer Inst. 1994;86(2):140–1.

    PubMed  CAS  Google Scholar 

  134. Khuri FR, Lee JJ, Lippman SM, Kim ES, Cooper JS, Benner SE, Winn R, Pajak TF, Williams B, Shenouda G, Hodson I, Fu K, Shin DM, Vokes EE, Feng L, Goepfert H, Hong WK. Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck cancer patients. J Natl Cancer Inst. 2006;98(7):441–50. doi:98/7/441 [pii]. 10.1093/jnci/djj091.

    PubMed  CAS  Google Scholar 

  135. Hildebrandt MA, Lippman SM, Etzel CJ, Kim E, Lee JJ, Khuri FR, Spitz MR, Lotan R, Hong WK, Wu X. Genetic variants in the PI3K/PTEN/AKT/mTOR pathway predict head and neck cancer patient second primary tumor/recurrence risk and response to retinoid chemoprevention. Clin Cancer Res. 2012;18(13):3705–13. doi:10.1158/1078-0432.CCR-11-3271. 1078-0432.CCR-11-3271 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26(4):612–9. doi:26/4/612 [pii]. 10.1200/JCO.2007.14.1713.

    PubMed  Google Scholar 

  137. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M, Cozen W, Liu L, Lynch CF, Wentzensen N, Jordan RC, Altekruse S, Anderson WF, Rosenberg PS, Gillison ML. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301. doi:10.1200/JCO.2011.36.4596. JCO.2011.36.4596 [pii].

    PubMed  PubMed Central  Google Scholar 

  138. Howard JD, Chung CH. Biology of human papillomavirus-related oropharyngeal cancer. Semin Radiat Oncol. 2012;22(3):187–93. doi:10.1016/j.semradonc.2012.03.002. S1053-4296(12)00021-5 [pii].

    PubMed  PubMed Central  Google Scholar 

  139. Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM, Schiller JT, Helenius A. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog. 2012;8(4):e1002657. doi:10.1371/journal.ppat.1002657. PPATHOGENS-D-11-02158 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Slebos RJ, Yi Y, Ely K, Carter J, Evjen A, Zhang X, Shyr Y, Murphy BM, Cmelak AJ, Burkey BB, Netterville JL, Levy S, Yarbrough WG, Chung CH. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(3 Pt 1):701–709. doi:12/3/701 [pii]. 10.1158/1078-0432.CCR-05-2017.

    PubMed  CAS  Google Scholar 

  141. Yarbrough WG, Whigham A, Brown B, Roach M, Slebos R. Phosphoinositide kinase-3 status associated with presence or absence of human papillomavirus in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2007;69(2 Suppl):S98–101. doi:S0360-3016(07)00951-0 [pii]. 10.1016/j.ijrobp.2007.04.082.

    PubMed  CAS  Google Scholar 

  142. Fury MG, Drobnjak M, Sima CS, Asher M, Shah J, Lee N, Carlson D, Wendel HG, Pfister DG. Tissue microarray evidence of association between p16 and phosphorylated eIF4E in tonsillar squamous cell carcinoma. Head Neck. 2011;33(9):1340–5. doi:10.1002/hed.21621.

    PubMed  Google Scholar 

  143. Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK, Sonenberg N. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One. 2007;2(2):e242. doi:10.1371/journal.pone.0000242.

    PubMed  PubMed Central  Google Scholar 

  144. Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell. 2003;12(4):889–901. doi:S1097276503003952 [pii].

    PubMed  CAS  Google Scholar 

  145. Molinolo AA, Marsh C, El Dinali M, Gangane N, Jennison K, Hewitt S, Patel V, Seiwert TY, Gutkind JS. mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clin Cancer Res. 2012;18(9):2558–68. doi:1078-0432.CCR-11-2824 [pii]. 10.1158/1078-0432.CCR-11-2824.

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Yang SX, Nguyen D, Rubinstein L, Sherman ME, Swain SM, Tomaszewska JE, Doroshow JH. pAKT expression in paraffin-embedded xenograft tumors after fixation delays and human breast cancer by optimized immunohistochemistry. J Clin Oncol. 2012;30(Suppl):Abstr 10603.

    Google Scholar 

  147. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–726.

    Google Scholar 

  148. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905–9.

    PubMed  CAS  Google Scholar 

  149. Rini BI. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res. 2008;14(5):1286–90. doi:14/5/1286 [pii]. 10.1158/1078-0432.CCR-07-4719.

    PubMed  CAS  Google Scholar 

  150. Gabardi S, Baroletti SA. Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy. 2010;30(10):1044–56. doi:10.1592/phco.30.10.1044 [pii].

    PubMed  CAS  Google Scholar 

  151. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26. doi:S1097-2765(08)00169-X [pii]. 10.1016/j.molcel.2008.03.003.

    PubMed  PubMed Central  CAS  Google Scholar 

  152. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804–12. doi:67/22/10804 [pii]. 10.1158/0008-5472.CAN-07-2310.

    PubMed  CAS  Google Scholar 

  153. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401. doi:S1550-4131(10)00084-7 [pii]. 10.1016/j.cmet.2010.03.014.

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Bo S, Benso A, Durazzo M, Ghigo E. Does use of metformin protect against cancer in Type 2 diabetes mellitus? J Endocrinol Invest. 2012;35(2):231–5. doi:8327 [pii].

    PubMed  CAS  Google Scholar 

  155. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, Kotani H. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956–67. doi:1535-7163.MCT-09-1012 [pii]. 10.1158/1535-7163.MCT-09-1012.

    PubMed  CAS  Google Scholar 

  156. Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, Minion DJ, Halter RJ, Wipf P, Abraham R, Kirkpatrick L, Powis G. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther. 2004;3(7):763–72. doi:3/7/763 [pii].

    PubMed  CAS  Google Scholar 

  157. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, Garcia-Echeverria C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7(7):1851–63. doi:1535-7163.MCT-08-0017 [pii]. 10.1158/1535-7163.MCT-08-0017.

    PubMed  CAS  Google Scholar 

  158. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, Arribas J, Baselga J. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68(19):8022–30. doi:68/19/8022 [pii]. 10.1158/0008-5472.CAN-08-1385.

    PubMed  CAS  Google Scholar 

  159. Chung CH, Ely K, McGavran L, Varella-Garcia M, Parker J, Parker N, Jarrett C, Carter J, Murphy BA, Netterville J, Burkey BB, Sinard R, Cmelak A, Levy S, Yarbrough WG, Slebos RJ, Hirsch FR. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol. 2006;24(25):4170–6. doi:24/25/4170 [pii]. 10.1200/JCO.2006.07.2587.

    PubMed  CAS  Google Scholar 

  160. Gupta AK, McKenna WG, Weber CN, Feldman MD, Goldsmith JD, Mick R, Machtay M, Rosenthal DI, Bakanauskas VJ, Cerniglia GJ, Bernhard EJ, Weber RS, Muschel RJ. Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin Cancer Res. 2002;8(3):885–92.

    PubMed  Google Scholar 

  161. Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A. Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene. 1997;15(5):579–84. doi:10.1038/sj.onc.1201216.

    PubMed  CAS  Google Scholar 

  162. Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, Zhou H, Smith M, Kimberly D, Glass J. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 2004;10(17):5820–7. doi:10.1158/1078-0432.CCR-03-0483. 10/17/5820 [pii].

    PubMed  CAS  Google Scholar 

  163. Pattje WJ, Schuuring E, Mastik MF, Slagter-Menkema L, Schrijvers ML, Alessi S, van der Laan BF, Roodenburg JL, Langendijk JA, van der Wal JE. The phosphatase and tensin homologue deleted on chromosome 10 mediates radiosensitivity in head and neck cancer. Br J Cancer. 2010;102(12):1778–85. doi:10.1038/sj.bjc.6605707. 6605707 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  164. Snietura M, Jaworska M, Mlynarczyk-Liszka J, Goraj-Zajac A, Piglowski W, Lange D, Wozniak G, Nowara E, Suwinski R. PTEN as a prognostic and predictive marker in postoperative radiotherapy for squamous cell cancer of the head and neck. PLoS One. 2012;7(3):e33396. doi:10.1371/journal.pone.0033396. PONE-D-11-18188 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  165. Barbareschi M, Buttitta F, Felicioni L, Cotrupi S, Barassi F, Del Grammastro M, Ferro A, Dalla Palma P, Galligioni E, Marchetti A. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res. 2007;13(20):6064–9. doi:13/20/6064 [pii]. 10.1158/1078-0432.CCR-07-0266.

    PubMed  CAS  Google Scholar 

  166. Shinohara ET, Maity A, Jha N, Lustig RA. Sirolimus as a potential radiosensitizer in squamous cell cancer of the head and neck. Head Neck. 2009;31(3):406–11. doi:10.1002/hed.20898.

    PubMed  PubMed Central  Google Scholar 

  167. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek V, Fu S, Piha-Paul SA, Lee JJ, Luthra R, Tsimberidou AM, Kurzrock R. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early phase clinical trials. Cancer Res. 2012. doi:0008-5472.CAN-12-1726 [pii]. 10.1158/0008-5472.CAN-12-1726.

    Google Scholar 

  168. Erlich RB, Kherrouche Z, Rickwood D, Endo-Munoz L, Cameron S, Dahler A, Hazar-Rethinam M, de Long LM, Wooley K, Guminski A, Saunders NA. Preclinical evaluation of dual PI3K-mTOR inhibitors and histone deacetylase inhibitors in head and neck squamous cell carcinoma. Br J Cancer. 2012;106(1):107–115. doi:10.1038/bjc.2011.495. bjc2011495 [pii].

    Google Scholar 

  169. Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E, Aller P. Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood. 2005;105(10):4013–20. doi:2004-07-2802 [pii]. 10.1182/blood-2004-07-2802.

    PubMed  CAS  Google Scholar 

  170. Roy R, Wewer UM, Zurakowski D, Pories SE, Moses MA. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem. 2004;279(49):51323–30. doi:10.1074/jbc.M409565200. M409565200 [pii].

    PubMed  CAS  Google Scholar 

  171. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M, Higashiyama S. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002;8(1):35–40. doi:10.1038/nm0102-35. nm0102-35 [pii].

    PubMed  CAS  Google Scholar 

  172. Kang Q, Cao Y, Zolkiewska A. Direct interaction between the cytoplasmic tail of ADAM 12 and the Src homology 3 domain of p85alpha activates phosphatidylinositol 3-kinase in C2C12 cells. J Biol Chem. 2001;276(27):24466–72. doi:10.1074/jbc.M101162200. M101162200 [pii].

    PubMed  CAS  Google Scholar 

  173. Rao VH, Kandel A, Lynch D, Pena Z, Marwaha N, Deng C, Watson P, Hansen LA. A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion. Oncogene. 2012;31(23):2888–98. doi:10.1038/onc.2011.460. onc2011460 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P, Kulmala J, Pulkkinen J, Grenman R, Elenius K. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res. 2006;12(13):4103–11. doi:12/13/4103 [pii]. 10.1158/1078-0432.CCR-05-2404.

    PubMed  CAS  Google Scholar 

  175. Hatakeyama H, Cheng H, Wirth P, Counsell A, Marcrom SR, Wood CB, Pohlmann PR, Gilbert J, Murphy B, Yarbrough WG, Wheeler DL, Harari PM, Guo Y, Shyr Y, Slebos RJ, Chung CH. Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS One. 2010;5(9):e12702. doi:e12702 [pii]. 10.1371/journal.pone.0012702.

    PubMed  PubMed Central  Google Scholar 

  176. Knowles LM, Stabile LP, Egloff AM, Rothstein ME, Thomas SM, Gubish CT, Lerner EC, Seethala RR, Suzuki S, Quesnelle KM, Morgan S, Ferris RL, Grandis JR, Siegfried JM. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15(11):3740–50. doi:1078-0432.CCR-08-3252 [pii]. 10.1158/1078-0432.CCR-08-3252.

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Seiwert TY, Jagadeeswaran R, Faoro L, Janamanchi V, Nallasura V, El Dinali M, Yala S, Kanteti R, Cohen EE, Lingen MW, Martin L, Krishnaswamy S, Klein-Szanto A, Christensen JG, Vokes EE, Salgia R. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69(7):3021–31. doi:10.1158/0008-5472.CAN-08-2881 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Xu H, Stabile LP, Gubish CT, Gooding WE, Grandis JR, Siegfried JM. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res. 2011:17(13):4425–38. doi:10.1158/1078-0432.CCR-10-3339. 1078-0432.CCR-10-3339 [pii].

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19(1):128–39. doi:cr2008328 [pii]. 10.1038/cr.2008.328.

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Bedi A, Chang X, Noonan K, Pham V, Bedi R, Fertig EJ, Considine M, Califano JA, Borrello I, Chung CH, Sidransky D, Ravi R. Inhibition of TGF-beta enhances the In vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther. 2012. doi:1535-7163.MCT-12-0101-T [pii]. 10.1158/1535-7163.MCT-12-0101-T.

    Google Scholar 

  181. Clarke PA, Workman P. Phosphatidylinositide-3-kinase inhibitors: addressing questions of isoform selectivity and pharmacodynamic/predictive biomarkers in early clinical trials. J Clin Oncol. 2012;30(3):331–3. doi:10.1200/JCO.2011.38.7167 [pii].

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine H. Chung MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Howard, J., Chung, C. (2014). The PI3K Signaling Pathway in Head and Neck Squamous Cell Carcinoma. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8815-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8815-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8814-9

  • Online ISBN: 978-1-4614-8815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics