Skip to main content

Chromatin Regulation by Long Non-coding RNAs

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

After the discovery of thousands of long noncoding RNAs (lncRNAs) in the mammalian genome, it became evident that hundreds of these transcripts are associated with chromatin-modifying complexes across multiple and distinct cell types. Furthermore, a number of lncRNAs have been shown to guide and tether chromatin-modifying complexes to specific genomic loci both in cis and in trans. These exciting findings suggest a general mechanism of lncRNA-mediated chromatin formation in mammals. In this chapter, we will discuss evidence supporting a model that lncRNAs provide the targeting specificity of specific protein complexes to chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banfai, B., Jia, H., Khatun, J., Wood, E., Risk, B., Gundling, W. E, Jr, et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22, 1646–1657.

    Article  PubMed  CAS  Google Scholar 

  • Barr, M. L., & Bertram, E. G. (1949). A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature, 163, 676.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120, 169–181.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.

    Article  PubMed  CAS  Google Scholar 

  • Bertani, S., Sauer, S., Bolotin, E., & Sauer, F. (2011). The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Molecular Cell, 43, 1040–1046.

    Article  PubMed  CAS  Google Scholar 

  • Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., et al. (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306, 2242–2246.

    Article  PubMed  CAS  Google Scholar 

  • Birney, E., Stamatoyannopoulos, J. A., Dutta, A., Guigo, R., Gingeras, T. R., Margulies, E. H., et al. (2007). Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature, 447, 799–816.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, A. P., Davis, S., Shulha, H. P., Meltzer, P., Margulies, E. H., Weng, Z., et al. (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132, 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Brockdorff, N., Ashworth, A., Kay, G. F., McCabe, V. M., Norris, D. P., Cooper, P. J., Swift, S., & Rastan, S. (1992). The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526.

    Google Scholar 

  • Brown, C. J., Hendrich, B. D., Rupert, J. L., Lafreniere, R. G., Xing, Y., Lawrence, J., et al. (1992). The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell, 71, 527–542.

    Article  PubMed  CAS  Google Scholar 

  • Cabili, M. N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25, 1915–1927.

    Article  CAS  Google Scholar 

  • Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.

    Article  PubMed  CAS  Google Scholar 

  • Carrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434, 400–404.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H. Y. (2009). Anatomic demarcation of cells: Genes to patterns. Science, 326, 1206–1207.

    Article  PubMed  CAS  Google Scholar 

  • Chu, C., Qu, K., Zhong, F. L., Artandi, S. E., & Chang, H. Y. (2011). Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 44, 667–678.

    Article  PubMed  CAS  Google Scholar 

  • Clark, M. B., & Mattick, J. S. (2011). Long noncoding RNAs in cell biology. Seminars in Cell & Developmental Biology, 22, 366–376.

    Article  CAS  Google Scholar 

  • Clemson, C. M., McNeil, J. A., Willard, H. F., & Lawrence, J. B. (1996). XIST RNA paints the inactive X chromosome at interphase: Evidence for a novel RNA involved in nuclear/chromosome structure. The Journal of cell biology, 132, 259–275.

    Article  PubMed  CAS  Google Scholar 

  • De Santa, F., Barozzi, I., Mietton, F., Ghisletti, S., Polletti, S., Tusi, B. K., et al. (2010). A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biology, 8, e1000384.

    Article  PubMed  Google Scholar 

  • Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 22, 1775–1789.

    Article  PubMed  CAS  Google Scholar 

  • Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Bi, C., Clark, B. S., Mady, R., Shah, P., & Kohtz, J. D. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes & Development, 20, 1470–1484.

    Article  CAS  Google Scholar 

  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.

    Article  PubMed  CAS  Google Scholar 

  • Guil, S., Soler, M., Portela, A., Carrere, J., Fonalleras, E., Gomez, A., et al. (2012). Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nature Structural & Molecular Biology, 19, 664–670.

    Article  CAS  Google Scholar 

  • Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., Donaghey, J., Carey, B. W., Garber, M., Grenier, J. K., Munson, G., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., et al. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28, 503–510.

    Article  PubMed  CAS  Google Scholar 

  • He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N., & Kinzler, K. W. (2008). The antisense transcriptomes of human cells. Science, 322, 1855–1857.

    Article  PubMed  CAS  Google Scholar 

  • Heard, E. (2004). Recent advances in X-chromosome inactivation. Current Opinion in Cell Biology, 16, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P., Stark, A., Harp, L. F., et al. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 459, 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., et al. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genetics, 39, 311–318.

    Article  PubMed  CAS  Google Scholar 

  • Howald, C., Tanzer, A., Chrast, J., Kokocinski, F., Derrien, T., Walters, N., et al. (2012). Combining RT-PCR-seq and RNA-seq to catalog all genic elements encoded in the human genome. Genome Research, 22, 1698–1710.

    Article  PubMed  CAS  Google Scholar 

  • Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M. J., Kenzelmann-Broz, D., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142, 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Ingolia, N. T., Lareau, L. F., & Weissman, J. S. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell, 147, 789–802.

    Article  PubMed  CAS  Google Scholar 

  • Jan, C. H., Friedman, R. C., Ruby, J. G., & Bartel, D. P. (2011). Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature, 469, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Kanhere, A., Viiri, K., Araujo, C. C., Rasaiyaah, J., Bouwman, R. D., Whyte, W. A., et al. (2010). Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Molecular Cell, 38, 675–688.

    Article  PubMed  CAS  Google Scholar 

  • Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C. P., Sorensen, P. H. et al. (2010). The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biology 8, 149.

    Google Scholar 

  • Khalil, A. M., & Driscoll, D. J. (2007). Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation. Epigenetics: official journal of the DNA Methylation Society, 2, 114–118.

    Article  Google Scholar 

  • Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences USA, 106, 11667–11672.

    Article  CAS  Google Scholar 

  • Khalil, A. M., & Rinn, J. L. (2011). RNA-protein interactions in human health and disease. Seminars in Cell & Developmental Biology, 22, 359–365.

    Article  CAS  Google Scholar 

  • Kim, T. K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Kmita, M., & Duboule, D. (2003). Organizing axes in time and space; 25 years of colinear tinkering. Science, 301, 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M., et al. (2006). CAGE: Cap analysis of gene expression. Nature Methods, 3, 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Koziol, M. J., & Rinn, J. L. (2010). RNA traffic control of chromatin complexes. Current Opinion in Genetics & Development, 20, 142–148.

    Article  CAS  Google Scholar 

  • Lee, J. T., & Bartolomei, M. S. (2013). X-Inactivation, imprinting, and long noncoding RNAs in health and disease. Cell, 152, 1308–1323.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. T., Davidow, L. S., & Warshawsky, D. (1999). Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genetics, 21, 400–404.

    Article  PubMed  CAS  Google Scholar 

  • Lemons, D., & McGinnis, W. (2006). Genomic evolution of Hox gene clusters. Science, 313, 1918–1922.

    Article  PubMed  CAS  Google Scholar 

  • Loewer, S., Cabili, M. N., Guttman, M., Loh, Y. H., Thomas, K., Park, I. H., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42, 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Mallo, M., Wellik, D. M., & Deschamps, J. (2010). Hox genes and regional patterning of the vertebrate body plan. Dev Biol, 344, 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, T. R., Gerhardt, D. J., Dinger, M. E., Crawford, J., Trapnell, C., Jeddeloh, J. A., et al. (2012). Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nature Biotechnology, 30, 99–104.

    Article  CAS  Google Scholar 

  • Mohammad, F., Mondal, T., Guseva, N., Pandey, G. K., & Kanduri, C. (2010). Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development, 137, 2493–2499.

    Article  PubMed  CAS  Google Scholar 

  • Moran, V. A., Perera, R. J., & Khalil, A. M. (2012). Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Research 40, 6391–6400.

    Google Scholar 

  • Nagano, T., Mitchell, J. A., Sanz, L. A., Pauler, F. M., Ferguson-Smith, A. C., Feil, R., et al. (2008). The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 322, 1717–1720.

    Article  PubMed  CAS  Google Scholar 

  • Ng, P., Wei, C. L., Sung, W. K., Chiu, K. P., Lipovich, L., Ang, C. C., et al. (2005). Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods, 2, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293, 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., et al. (2002). Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 420, 563–573.

    Article  PubMed  Google Scholar 

  • Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., et al. (2004). Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genetics, 36, 40–45.

    Article  PubMed  Google Scholar 

  • Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32, 232–246.

    Article  PubMed  CAS  Google Scholar 

  • Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136, 629–641.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, I. A., Mattick, J. S., & Mehler, M. F. (2010). Long non-coding RNAs in nervous system function and disease. Brain Research, 1338, 20–35.

    Article  PubMed  CAS  Google Scholar 

  • Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S. A., Flynn, R. A., & Wysocka, J. (2011). A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 470, 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Rinn, J. L., Euskirchen, G., Bertone, P., Martone, R., Luscombe, N. M., Hartman, S., et al. (2003). The transcriptional activity of human chromosome 22. Genes & Development, 17, 529–540.

    Article  CAS  Google Scholar 

  • Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129, 1311–1323.

    Article  PubMed  CAS  Google Scholar 

  • Sado, T., Hoki, Y., & Sasaki, H. (2005). Tsix silences Xist through modification of chromatin structure. Developmental Cell, 9, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, K. M., Mayer, C., Postepska, A., & Grummt, I. (2010). Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes & Development, 24, 2264–2269.

    Article  CAS  Google Scholar 

  • Schorderet, P., & Duboule, D. (2011). Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genetics, 7, e1002071.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, Y. B., & Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews Genetics, 8, 9–22.

    Article  PubMed  CAS  Google Scholar 

  • Sessa, L., Breiling, A., Lavorgna, G., Silvestri, L., Casari, G., & Orlando, V. (2007). Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA, 13, 223–239.

    Article  PubMed  CAS  Google Scholar 

  • Sigova, A. A., Mullen, A. C., Molinie, B., Gupta, S., Orlando, D. A., Guenther, M. G., et al. (2013). Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proceedings of the National Academy of Sciences USA, 110, 2876–2881.

    Article  CAS  Google Scholar 

  • Sleutels, F., Zwart, R., & Barlow, D. P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 415, 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Song, L., Zhang, Z., Grasfeder, L. L., Boyle, A. P., Giresi, P. G., Lee, B. K., et al. (2011). Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Research, 21, 1757–1767.

    Article  PubMed  CAS  Google Scholar 

  • Sun, B. K., Deaton, A. M., & Lee, J. T. (2006). A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Molecular Cell, 21, 617–628.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  • Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43, 904–914.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472, 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., et al. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40, 897–903.

    Article  PubMed  CAS  Google Scholar 

  • Werner, A., Carlile, M., & Swan, D. (2009). What do natural antisense transcripts regulate? RNA biology 6, 43–48.

    Google Scholar 

  • Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.

    Article  PubMed  CAS  Google Scholar 

  • Yildirim, E., Kirby, J. E., Brown, D. E., Mercier, F. E., Sadreyev, R. I., Scadden, D. T., et al. (2013). Xist RNA is a potent suppressor of hematologic cancer in mice. Cell, 152, 727–742.

    Article  PubMed  CAS  Google Scholar 

  • Zentner, G. E., Tesar, P. J., & Scacheri, P. C. (2011). Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Research, 21, 1273–1283.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Ohsumi, T. K., Kung, J. T., Ogawa, Y., Grau, D. J., Sarma, K., et al. (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Molecular Cell, 40, 939–953.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J., & Lee, J. T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad M. Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Factor, D.C., Tesar, P.J., Khalil, A.M. (2013). Chromatin Regulation by Long Non-coding RNAs. In: Khalil, A., Coller, J. (eds) Molecular Biology of Long Non-coding RNAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8621-3_1

Download citation

Publish with us

Policies and ethics