Skip to main content

Epigenetic Variation, Phenotypic Heritability, and Evolution

  • Chapter
  • First Online:
Epigenetics and Complex Traits

Abstract

Familial aggregation of complex diseases may have many causes in addition to and apart from genetic predisposition due to common ancestry. For example, exposure to an environment that induces susceptibility to a disease may produce similar familial aggregations when the environment is shared by family members. In general, according to the principles of (Johannsen 1903), the emergence of a disease phenotype is the result of the combined effects of the genotype of the individual and the environment that it experiences during development. The heritability of a disease is a measure of familial aggregation in terms of the covariances among family members relative to the variance in disease state in the general population. Thus heritability expresses the within-family resemblance, observed by Darwin and inferred by him to reflect inheritance, which formed the core of his (Darwin 1859) theory of evolution. Darwin’s inspiration originated from the practical use of family resemblance in animal breeding. Animal breeders have long known that a major obstacle to progress in genetic improvement is the interaction between familial aggregation of environments and the effects of similar genetics within families. The potential importance of this interaction, recognized in classical studies of the genetic epidemiology of complex diseases and other quantitative characters, has reemerged in studies of the effects of epigenetic modifications, their variation, and their transmission between generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Begum G et al (2012) Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J. doi:10.1096/fj.11-198762

    PubMed  Google Scholar 

  • Borghol N et al (2012) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41(1):62–74

    Article  PubMed  Google Scholar 

  • Carja O, Feldman MW (2012) An equilibrium for phenotypic variance in fluctuating environments owing to epigenetics. J R Soc Interface. doi:10.1098/rsif.2011.0390

    PubMed  Google Scholar 

  • Carone BR et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. doi:10.1016/j.cell.2010.12.008

    PubMed  Google Scholar 

  • Cavalli-Sforza LL, Feldman MW (1973) Cultural versus biological inheritance: phenotypic transmission from parents to children (a theory of the effect of parental phenotypes on children’s phenotypes). Am J Hum Genet 25(6):618–637

    PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Feldman MW (1981) Cultural transmission and evolution: a quantitative approach. Princeton University Press, Princeton

    Google Scholar 

  • Curley JP et al (2011) Epigenetics and the origins of paternal effects. Horm Behav. doi:10.1016/j.yhbeh.2010.06.018

    PubMed  Google Scholar 

  • Danchin E, Wagner RH (2010) Inclusive heritability: combining genetic and non-genetic information to study animal behavior and culture. Oikos 119(2):210–218

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. doi:10.1038/nrg3188

    PubMed  Google Scholar 

  • Day T, Bonduriansky R (2011) A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am Nat. doi:10.1086/660911

    Google Scholar 

  • Eichler EE et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. doi:10.1038/nrg2809

    PubMed  Google Scholar 

  • ENCODE Project Consortium et al (2012) An integrated encyclopedia of dna elements in the human genome. Nature. doi:10.1038/nature11247

    Google Scholar 

  • Feinberg AP, Irizarry RA (2010) Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci USA. doi:10.1073/pnas.0906183107

    PubMed  Google Scholar 

  • Feldman MW, Cavalli-Sforza LL (1979) Aspects of variance and covariance analysis with cultural inheritance. Theor Popul Biol 15(3):276–307

    Article  PubMed  CAS  Google Scholar 

  • Feldman MW et al (1995) Statistics of discrete-valued traits under vertical transmission. Working paper No. 65 of the Morrison Institute for Population Studies—Stanford University. Accessible on web at http://www.stanford.edu/group/morrinst/pdf/65.pdf

    Google Scholar 

  • Feldman MW et al (2000) Genes, culture, and inequality. In: Arrow K, Bowles S, Durlauf S (eds) Meritocracy and economic inequality. Princeton University Press, Princeton

    Google Scholar 

  • Fraga MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. doi:10.1073/pnas.0500398102

    PubMed  Google Scholar 

  • Furrow RE et al (2011) Environment-sensitive epigenetics and the heritability of complex diseases. Genetics. doi:10.1534/genetics.111.131912

    PubMed  Google Scholar 

  • Gaál B et al (2010) Exact results for the evolution of stochastic switching in variable asymmetric environments. Genetics. doi:10.1534/genetics.109.113431

    Google Scholar 

  • Geoghegan JL, Spencer HG (2012) Population-epigenetic models of selection. Theor Popul Biol. doi:10.1016/j.tpb.2011.08.001

    Google Scholar 

  • Goldstein DB (2009) Common genetic variation and human traits. N Engl J Med. doi:10.1056/NEJMp0806284

    Google Scholar 

  • Heijmans BT et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. doi:10.1073/pnas.0806560105

    PubMed  Google Scholar 

  • Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol. doi:10.1111/j.1365-294X.2011.05026.x

    Google Scholar 

  • Herrera CM et al (2012) Jack of all nectars, master of most: Dna methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol. doi:10.1111/j.1365-294X.2011.05402.x

    Google Scholar 

  • Hult M et al (2010) Hypertension, diabetes and overweight: looming legacies of the biafran famine. PLoS ONE. doi:10.1371/journal.pone.0013582

    PubMed  Google Scholar 

  • Johannes F, ColomĂ©-TatchĂ© M (2011) Quantitative epigenetics through epigenomic perturbation of isogenic lines. Genetics. doi:10.1534/genetics.111.127118

    Google Scholar 

  • Johannes F et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. doi:10.1371/journal.pgen.1000530

    PubMed  Google Scholar 

  • Johannsen W (1903) Om arvelighed i samfund og i rene linier. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger 3:247–270

    Google Scholar 

  • Kucharski R et al (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science. doi:10.1126/science.1153069

    PubMed  Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science. doi:10.1126/science.1114383

    PubMed  Google Scholar 

  • Lachmann M, Jablonka E (1996) The inheritance of phenotypes: an adaptation to fluctuating environments. J Theor Biol. doi:10.1006/jtbi.1996.0109

    PubMed  Google Scholar 

  • Liberman U et al (2011) On the evolution of mutation in changing environments: recombination and phenotypic switching. Genetics. doi:10.1534/genetics.110.123620

    PubMed  Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing heritability. Nature. doi:10.1038/456018a

    Google Scholar 

  • McGowan PO et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. doi:10.1038/nn.2270

    PubMed  Google Scholar 

  • Ng SF et al (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467(7318):963–967

    Article  PubMed  CAS  Google Scholar 

  • Otto SP et al (1995) Genetics and cultural inheritance of continuous traits. Working paper No. 64 of the Morrison Institute for Population Studies—Stanford University. Accessible on web at http://www.stanford.edu/group/morrinst/pdf/64.pdf

    Google Scholar 

  • Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. doi:10.1038/nature09230

    PubMed  Google Scholar 

  • Roseboom T et al (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev. doi:10.1016/j.earlhumdev.2006.07.001

    PubMed  Google Scholar 

  • Salathe M et al (2009) Evolution of stochastic switching rates in asymmetric fitness landscapes. Genetics. doi:10.1534/genetics.109.103333

    PubMed  Google Scholar 

  • Sandovici I et al (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci USA. doi:10.1073/pnas.1019007108

    PubMed  Google Scholar 

  • Skinner MK (2011) Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today. doi:10.1002/bdrc.20199

    PubMed  Google Scholar 

  • Slatkin M (2009) Epigenetic inheritance and the missing heritability problem. Genetics. doi:10.1534/genetics.109.102798

    PubMed  Google Scholar 

  • St-Clair D et al (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA. doi:10.1001/jama.294.5.557

    PubMed  Google Scholar 

  • Susser ES, Lin SP (1992) Schizophrenia after prenatal exposure to the Dutch hunger winter of 1944–1945. Arch Gen Psychiatry 49(12):983–988

    Article  PubMed  CAS  Google Scholar 

  • Susser ES et al (1996) Schizophrenia after prenatal famine—further evidence. Arch Gen Psychiatry 53(1):25–31

    Article  PubMed  CAS  Google Scholar 

  • Tal O et al (2010) Epigenetic contribution to covariance between relatives. Genetics 184(4):1037–1050

    Article  PubMed  CAS  Google Scholar 

  • Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167(1):523–530

    Article  PubMed  Google Scholar 

  • Tobi EW et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053

    Article  PubMed  CAS  Google Scholar 

  • Tyrka AR et al (2012) Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS ONE 7(1):e30148

    Article  PubMed  CAS  Google Scholar 

  • Uddin M et al (2010) Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci USA. doi:10.1073/pnas.0910794107

    PubMed  Google Scholar 

  • Verhoeven KJF et al (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. doi:10.1111/j.1469-8137.2009.03121.x

    Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA et al (2010) Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6(12):e1001252

    Article  PubMed  CAS  Google Scholar 

  • Weaver ICG et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Furrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Furrow, R.E., Christiansen, F.B., Feldman, M.W. (2013). Epigenetic Variation, Phenotypic Heritability, and Evolution. In: Naumova, A., Greenwood, C. (eds) Epigenetics and Complex Traits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8078-5_10

Download citation

Publish with us

Policies and ethics