Skip to main content

Histone Methyltransferase Complexes in Transcription, Development, and Cancer

  • Chapter
  • First Online:
Systems Analysis of Chromatin-Related Protein Complexes in Cancer

Abstract

Dynamic regulation of the mammalian epigenome enables precise control of the developmental gene expression programs that direct stem and progenitor cell proliferation, self-renewal, and differentiation. Among the posttranslational modifications that occur on chromatin, histone methylation is a key epigenetic mark with central roles in virtually all DNA-templated processes, including gene transcription by RNA polymerase II (RNAPII). Histone methylation is catalyzed by various histone methyltransferase enzymes, which typically operate within the context of conserved macromolecular complexes. Characterization of the composition and function of histone methyltransferase complexes is critical to understanding the molecular and epigenetic underpinning of cell fate decisions during development. Aberrant histone methylation is frequently observed at the onset and progression of the disease state, originating either directly by inactivating or activating causal mutations that drive pathogenesis or indirectly as facilitators that perpetuate cancer-related pathways. Here, we review the molecular biology of diverse, often conserved, multicomponent histone methyltransferase complexes with emphasis on the biochemical and physiological roles of these complexes in transcription regulation and chromatin architecture in normal development and human diseases such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allfrey V, Faulkner R, Mirsky A. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 1964;51:786–94.

    Article  PubMed  CAS  Google Scholar 

  2. Luger K, Mäder A, Richmond R, Sargent D, Richmond T. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.

    Article  PubMed  CAS  Google Scholar 

  3. Bannister A, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  PubMed  CAS  Google Scholar 

  4. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  PubMed  CAS  Google Scholar 

  5. Lu X, Simon M, Chodaparambil J, Hansen J, Shokat K, Luger K, et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol. 2008;15(10):1122–4.

    Article  PubMed  CAS  Google Scholar 

  6. Reuter G, Spierer P. Position effect variegation and chromatin proteins. Bioessays. 1992;14(9):605–12.

    Article  PubMed  CAS  Google Scholar 

  7. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004;38:413–43.

    Article  PubMed  CAS  Google Scholar 

  8. Jenuwein T, Laible G, Dorn R, Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci. 1998;54(1):80–93.

    Article  PubMed  CAS  Google Scholar 

  9. Rea S, Eisenhaber F, O'Carroll D, Strahl B, Sun Z, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406(6796):593–9.

    Article  PubMed  CAS  Google Scholar 

  10. On T, Xiong X, Pu S, Turinsky A, Gong Y, Emili A, et al. The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins. 2010;78(9):2075–89.

    PubMed  CAS  Google Scholar 

  11. Copeland R, Solomon M, Richon V. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov. 2009;8(9):724–32.

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen A, Zhang Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 2011;25(13):1345–58.

    Article  PubMed  CAS  Google Scholar 

  13. Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011;25(8):781–8.

    Article  PubMed  CAS  Google Scholar 

  14. Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner E, Carpenter P. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  16. Hohenauer T, Moore A. The Prdm family: expanding roles in stem cells and development. Development. 2012;139(13):2267–82.

    Article  PubMed  CAS  Google Scholar 

  17. Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci. 2010;35(6):323–32.

    Article  PubMed  CAS  Google Scholar 

  18. Yang H, Mizzen C. The multiple facets of histone H4-lysine 20 methylation. Biochem Cell Biol. 2009;87(1):151–61.

    Article  PubMed  CAS  Google Scholar 

  19. Strahl B, Ohba R, Cook R, Allis C. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA. 1999;96(26):14967–72.

    Article  PubMed  CAS  Google Scholar 

  20. Black J, Van R, Whetstine J. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48(4):491–507.

    Article  PubMed  CAS  Google Scholar 

  21. Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell. 2009;36(4):541–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kim M, Suh H, Cho E, Buratowski S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J Biol Chem. 2009;284(39):26421–6.

    Article  PubMed  CAS  Google Scholar 

  23. Komarnitsky P, Cho E, Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 2000;14(19):2452–60.

    Article  PubMed  CAS  Google Scholar 

  24. Peterlin B, Price D. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006;23(3):297–305.

    Article  PubMed  CAS  Google Scholar 

  25. Luo Z, Lin C, Shilatifard A. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol. 2012;13(9):543–7.

    Article  PubMed  CAS  Google Scholar 

  26. Krogan N, Kim M, Tong A, Golshani A, Cagney G, Canadien V, et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003;23(12):4207–18.

    Article  PubMed  CAS  Google Scholar 

  27. Carrozza M, Li B, Florens L, Suganuma T, Swanson S, Lee K, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005;123(4):581–92.

    Article  PubMed  CAS  Google Scholar 

  28. Grewal S, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  29. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.

    Article  PubMed  CAS  Google Scholar 

  30. Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter F, et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell. 2012;150(5):948–60.

    Article  PubMed  CAS  Google Scholar 

  31. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128(4):735–45.

    Article  PubMed  CAS  Google Scholar 

  32. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10(5):361–71.

    Article  PubMed  CAS  Google Scholar 

  33. O'Meara M, Simon J. Inner workings and regulatory inputs that control Polycomb repressive complex 2. Chromosoma. 2012;121(3):221–34.

    Article  PubMed  Google Scholar 

  34. Xu C, Bian C, Yang W, Galka M, Ouyang H, Chen C, et al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci USA. 2010;107(45):19266–71.

    Article  PubMed  CAS  Google Scholar 

  35. Ahn S, Keogh M, Buratowski S. Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J. 2009;28(3):205–12.

    Article  PubMed  CAS  Google Scholar 

  36. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15(1):57–67.

    Article  PubMed  CAS  Google Scholar 

  37. Shen X, Liu Y, Hsu Y, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell. 2008;32(4):491–502.

    Article  PubMed  CAS  Google Scholar 

  38. Ezhkova E, Lien W, Stokes N, Pasolli H, Silva J, Fuchs E, et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 2011;25(5):485–98.

    Article  PubMed  CAS  Google Scholar 

  39. Mousavi K, Zare H, Wang A, Sartorelli V. Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol Cell. 2012;45(2):255–62.

    Article  PubMed  CAS  Google Scholar 

  40. Cosgrove M, Patel A. Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J. 2010;277(8):1832–42.

    Article  PubMed  CAS  Google Scholar 

  41. Lee J, Skalnik D. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol. 2008;28(2):609–18.

    Article  PubMed  CAS  Google Scholar 

  42. Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R, et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 2012;26(15):1714–28.

    Article  PubMed  CAS  Google Scholar 

  43. Hughes C, Rozenblatt-Rosen O, Milne T, Copeland T, Levine S, Lee J, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell. 2004;13(4):587–97.

    Article  PubMed  CAS  Google Scholar 

  44. Agger K, Cloos P, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449(7163):731–4.

    Article  PubMed  CAS  Google Scholar 

  45. Marschalek R. Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol. 2011;152(2):141–54.

    Article  PubMed  CAS  Google Scholar 

  46. Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 2011;25(7):661–72.

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen A, Taranova O, He J, Zhang Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011;117(25):6912–22.

    Article  PubMed  CAS  Google Scholar 

  48. Bernt K, Zhu N, Sinha A, Vempati S, Faber J, Krivtsov A, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20(1):66–78.

    Article  PubMed  CAS  Google Scholar 

  49. Lee J. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.

    Article  PubMed  CAS  Google Scholar 

  50. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science. 2004;303(5658):672–6.

    Article  PubMed  CAS  Google Scholar 

  51. Bühler M, Verdel A, Moazed D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell. 2006;125(5):873–86.

    Article  PubMed  Google Scholar 

  52. Kim D, Villeneuve L, Morris K, Rossi J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol. 2006;13(9):793–7.

    Article  PubMed  CAS  Google Scholar 

  53. Jeon Y, Lee J. YY1 tethers Xist RNA to the inactive X nucleation center. Cell. 2011;146(1):119–33.

    Article  PubMed  CAS  Google Scholar 

  54. Aguilo F, Zhou M, Walsh M. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 2011;71(16):5365–9.

    Article  PubMed  CAS  Google Scholar 

  55. Tsai M, Manor O, Wan Y, Mosammaparast N, Wang J, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article  PubMed  CAS  Google Scholar 

  56. Wang K, Yang Y, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472(7341):120–4.

    Article  PubMed  CAS  Google Scholar 

  57. Orom U, Shiekhattar R. Noncoding RNAs and enhancers: complications of a long-distance relationship. Trends Genet. 2011;27(10):433–9.

    Article  PubMed  CAS  Google Scholar 

  58. Kanhere A, Viiri K, Araújo C, Rasaiyaah J, Bouwman R, Whyte W, et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell. 2010;38(5):675–88.

    Article  PubMed  CAS  Google Scholar 

  59. Xu K, Wu Z, Groner A, He H, Cai C, Lis R, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012;338(6113):1465–9.

    Article  PubMed  CAS  Google Scholar 

  60. Chaturvedi C, Somasundaram B, Singh K, Carpenedo R, Stanford W, Dilworth F, et al. Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proc Natl Acad Sci USA. 2012;109(46):18845–50.

    Article  PubMed  CAS  Google Scholar 

  61. Shankar S, Bahirvani A, Rao V, Bharathy N, Ow J, Taneja R, et al. G9a, a multipotent regulator of gene expression. Epigenetics. 2013;8(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  62. Bittencourt D, Wu D, Jeong K, Gerke D, Herviou L, Ianculescu I, et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc Natl Acad Sci USA. 2012;109(48):19673–8.

    Article  PubMed  CAS  Google Scholar 

  63. Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol. 2006;7(7):540–6.

    Article  PubMed  CAS  Google Scholar 

  64. Avilion A, Nicolis S, Pevny L, Perez L, Vivian N, Lovell-Badge R, et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17(1):126–40.

    Article  PubMed  CAS  Google Scholar 

  65. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26(7):795–7.

    Article  PubMed  CAS  Google Scholar 

  66. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, et al. Nanog safeguards pluripotency and mediates germline development. Nature. 2007;450(7173):1230–4.

    Article  PubMed  CAS  Google Scholar 

  67. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–55.

    Article  PubMed  CAS  Google Scholar 

  68. Dejosez M, Krumenacker J, Zitur L, Passeri M, Chu L, Songyang Z, et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell. 2008;133(7):1162–74.

    Article  PubMed  CAS  Google Scholar 

  69. Boyer L, Lee T, Cole M, Johnstone S, Levine S, Zucker J, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56.

    Article  PubMed  CAS  Google Scholar 

  70. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  71. Knoepfler P, Zhang X, Cheng P, Gafken P, McMahon S, Eisenman R, et al. Myc influences global chromatin structure. EMBO J. 2006;25(12):2723–34.

    Article  PubMed  CAS  Google Scholar 

  72. Loh Y, Wu Q, Chew J, Vega V, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38(4):431–40.

    Article  PubMed  CAS  Google Scholar 

  73. Loh Y, Zhang W, Chen X, George J, Ng H. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007;21(20):2545–57.

    Article  PubMed  CAS  Google Scholar 

  74. Dinger M, Amaral P, Mercer T, Pang K, Bruce S, Gardiner B, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45.

    Article  PubMed  CAS  Google Scholar 

  75. Khalil A, Guttman M, Huarte M, Garber M, Raj A, Rivea M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.

    Article  PubMed  CAS  Google Scholar 

  76. Guttman M, Donaghey J, Carey B, Garber M, Grenier J, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.

    Article  PubMed  CAS  Google Scholar 

  77. Bernstein B, Mikkelsen T, Xie X, Kamal M, Huebert D, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  PubMed  CAS  Google Scholar 

  78. Pasini D, Hansen K, Christensen J, Agger K, Cloos P, Helin K, et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev. 2008;22(10):1345–55.

    Article  PubMed  CAS  Google Scholar 

  79. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol. 2006;8(2):188–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Olsen B.Sc., M.Sc.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olsen, J.B., Greenblatt, J., Emili, A. (2014). Histone Methyltransferase Complexes in Transcription, Development, and Cancer. In: Emili, A., Greenblatt, J., Wodak, S. (eds) Systems Analysis of Chromatin-Related Protein Complexes in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7931-4_2

Download citation

Publish with us

Policies and ethics