Skip to main content

Simulation of BTI-Related Time-Dependent Variability in CMOS Circuits

  • Chapter
  • First Online:
Bias Temperature Instability for Devices and Circuits

Abstract

The correct evaluation of BTI impact on the circuit performance and reliability is a major concern in current technologies. Since BTI in ultrascaled devices is a stochastic mechanism and aging must be evaluated under the actual operation conditions of devices in the circuit, SPICE and Monte Carlo simulations are customary combined with this purpose. The key point in these simulations is the correct description of the BTI effects in the device and their inclusion in circuit simulators. In this subchapter, the different adopted approaches are presented, pointing out their pros and cons, and illustrated with examples of BTI effects on several analog and digital circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Hicks et al., Intel Technology Journal 12, 131 (2008).

    Google Scholar 

  2. A. Haggag, et. Al., IEEE Int. Reliab. Phys.Symp. (IRPS) Proc. 93 (2006).

    Google Scholar 

  3. Dieter K. Schroder and Jeff A. Babcock, J. Appl. Phys. 94, 1 (2003)

    Article  Google Scholar 

  4. E. Takeda, E. Murakami, K. Torii, Y. Okuyama, E. Ebe, K. Hinode, and S.Kimura, Microelectron. Reliab. 42, 493 (2002).

    Article  Google Scholar 

  5. M. M. Albert and N. H. Tolk, Phys. Rev. B 63, 035308 (2001).

    Article  Google Scholar 

  6. C. H. Lin, M. H. Lee, and C. W. Liu, Appl. Phys. Lett. 78, 637 (2001).

    Article  Google Scholar 

  7. C. H. Liu et al., Tech. Dig. Int. Electron Devices Meet, 861 (2001).

    Google Scholar 

  8. M. Aoulaiche, et. al., IEEE Int. Reliab. Phys.Symp. (IRPS) Proc., 358 (2008).

    Google Scholar 

  9. S. Mahapatra and V.D. Maheta, Proceedings of Solid-State and Integrated-Circuit Technology (ICSICT) Proc. 616 (2008).

    Google Scholar 

  10. S. Krishnan et. al., IEEE Int. Reliab. Phys.Symp. (IRPS) Proc. 5.A.1.1 (2012).

    Google Scholar 

  11. S. Mahapatra, FEOL and BEOL process dependence of NBTI, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  12. M. Silverman and A. Kleyner, Proceedings Reliability and Maintainability Symposium (RAMS) Proc. 1 (2012).

    Google Scholar 

  13. S. Mitra, K. Brelsford, Y. M. Kim, H.-H. Lee and Y. Li, Emerging and Selected Topics in Circuits and Systems, 1, 30 (2011).

    Article  Google Scholar 

  14. E. Maricau and G. Gielen. Emerging and Selected Topics in Circuits and Systems 1, 50 (2011).

    Article  Google Scholar 

  15. R. Joshi, R. Kanj, C. Adams and J.Warnock. IEEE Int. Reliab. Phys.Symp. (IRPS) Proc. 3A.6.1(2013).

    Google Scholar 

  16. U. Y. Ogras, R. Marculescu, D. Marculescu, IEEE Design Automation Conference Proc. 614 (2008).

    Google Scholar 

  17. D. Sylvester, D. Blaauw and E. Karl, IEEE Design & Test of Computers Proc., 484 (2006).

    Google Scholar 

  18. J. Tschanz et al., Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International 292 (2007).

    Google Scholar 

  19. J. Tschanz et al., Symposium on VLSI Technology Digest of Technical Papers 112 (2009).

    Google Scholar 

  20. E. Karl, D. Blaaw, D. Sylvester and T. Mudge IEEE Trans. on VLSI 16, 476 (2008).

    Google Scholar 

  21. K. Mihic, T. Simuni and G. De Micheli, Digital System Design (DSD) Euromicro Symposium on 5 (2004)

    Google Scholar 

  22. J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers, IEEE Micro, 25, 70 (2005).

    Google Scholar 

  23. E. Mintarno, V. Chandra, D. Pietromonaco, R. Aitken and R. W. Dutto, IEEE Int. Reliab. Phys.Symp. (IRPS) Proc. p. 3A1.1 (2013)

    Google Scholar 

  24. International Technology Roadmap for Semiconductors available at http://public.itrs.net.

  25. M. Nafria, R. Rodriguez, M. Porti, J. Martin-Martinez, M. Lanza, and X. Aymerich, Int. Electron Devices Meeting Tech. Dig., 6.3.1 (2011).

    Google Scholar 

  26. J. Martin-Martinez, N. Ayala, R. Rodriguez, M. Nafria and X. Aymerich, Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Conference on. 249 (2012).

    Google Scholar 

  27. L. Gerrer et. al., IEEE Int. Reliab. Phys.Symp. (IRPS) Proc. 3A.2 (2013).

    Google Scholar 

  28. B. Kaczer et. al., IRPS Int. Reliab. Phys.Symp. (IRPS) Proc. XT.3.1 (2011).

    Google Scholar 

  29. P. Weckx, B. Kaczer, M. Toledano‐Luque, T. Grasser, P.J. Roussel, et. al. Int. Reliab. Phys. Symp. (IRPS) Proc. 3A4.1 (2013).

    Google Scholar 

  30. L. Brusamarello, G. I. Wirth, Ph. Roussel, M. Miranda, Microel. Reliab. 51 ,2341 (2011).

    Article  Google Scholar 

  31. M. A. Alam and S. Mahapatra, Microel. Reliab. 45, 71(2005).

    Article  Google Scholar 

  32. M. A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, Microel. Reliab. 47, 853 (2007).

    Article  Google Scholar 

  33. V. Huard, M. Denais, and C. Parthasarathy, Microel. Reliab. 46 1(2006).

    Article  Google Scholar 

  34. B. Kaczer, V. Arkhipov, M. Jurczak, and G. Groeseneken, Microel. Eng. 80, 122 (2005).

    Article  Google Scholar 

  35. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, P. J. Roussel, and M. Nelhiebel. Int. Electron Devices Meeting Tech. Dig., 4.4.1 (2010)

    Google Scholar 

  36. J. Martin-Martinez, B. Kaczer, M. Toledano-Luque, R. Rodriguez, M. Nafria, X. Aymerich, G. Groeseneken, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., XT4.1 (2011)

    Google Scholar 

  37. S. Mahapatra, A comprehensive modeling framework for DC and AC NBTI, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  38. T. Grasser, The capture/emission time map approach to the bias temperature instability, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  39. B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken and H. Reisinger, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc. 26 (2010).

    Google Scholar 

  40. K. Zhao, J. H. Stathis, B. P. Linder, E. Carties and A. Kerber, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc. 4A.3.1 (2011)

    Google Scholar 

  41. B. Kaczer, J. Franco, M. Toledano-Luque, Ph. J. Roussel, M. F. Bukhori, A. Asenov, B. Schwarz, M. Bina, T. Grasser, G. Groeseneken, IEEE Int. Reliab. Phys. Symp. Proc. 5A.2.1 (2012)

    Google Scholar 

  42. S. E. Rauch, IEEE T. Dev. Mat. Rel. 7, 524 (2007)

    Article  Google Scholar 

  43. J. Franco, B. Kaczer, M. Toledano-Luque, Ph. J. Roussel, J. Mitard, L.- . Ragnarsson, L. Witters, T. Chiarella, M. Togo, N. Horiguchi, G. Groeseneken, M. F. Bukhori, T. Grasser and A. Asenov, IEEE Int. Reliab. Phys. Symp. Proc. 5A.4.1 (2012).

    Google Scholar 

  44. M. Toledano-Luque, B. Kaczer, Ph.J. Roussel, J. Franco, T. Grasser, C. Vrancken, N.Horiguchi, and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp., 4A.2.1 (2011).

    Google Scholar 

  45. H. Reisinger, T. Grasser, K. Ermisch, H. Nielen, W. Gustin, and C. Schlünder, Proc. IEEE Int. Reliab. Phys. Symp., 6A.1.1 (2011)

    Google Scholar 

  46. S. E. Rauch, III, BTI induced statistical variations, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  47. B. Kaczer, M. Toledano-Luque, J. Franco, P. Weckx, Statistical distribution of defect parameters, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  48. M. Toledano-Luque, B. Kaczer, J. Franco, Ph. J. Roussel, T. Grasser, T. Y. Hoffmann, G. Groeseneken, Proc. VLSI Symp. 152 (2011)

    Google Scholar 

  49. P. Asenov, N.A. Kamsani, D. Reid, C. Millar, S. Roy, A. Asenov, in Proc. of the European Solid-State Device Research Conference (ESSDERC), 130. (2010)

    Google Scholar 

  50. B. Cheng, D. Dideban, N. Moezi, C. Millar, G. Roy, X. Wang, S. Roy and A. Asenov, Design, Automation & Test in Europe (DATE), 650, (2010).

    Google Scholar 

  51. J. Martin-Martinez, R. Rodriguez, M. Nafria and X. Aymerich, IEEE T. Dev. Mat. Rel., 9, 305 (2009).

    Article  Google Scholar 

  52. M. Pelgrom, A. Duinmaijer and A. Welbers, IEEE J. Solid-State Circuits, 24, 1433 (1989).

    Article  Google Scholar 

  53. T. Mizutani, A. Kumar and T. Hiramoto, Int. Electron Devices Meeting Tech. Dig., 25.2.1.(2011)

    Google Scholar 

  54. A. Asenov, Proc. VLSI Symp., 86 (2007).

    Google Scholar 

  55. S.K. Saha, Design & Test of Computers, IEEE, 27, 8 (2010).

    Google Scholar 

  56. A. Tajalli and Y. Leblebici, Circuit and Systems I: Regular Papers, IEEE Transactions on, 58, 2189 (2011).

    MathSciNet  Google Scholar 

  57. V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil and A. Bravaix, 265 (2004).

    Google Scholar 

  58. A. Kerber, K. Maitra, A. Majumdar, M. Hargrove, R. J. Carter and E. A.Cartier, IEEE T. Electron Dev., 55, 3175 (2008).

    Article  Google Scholar 

  59. H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, and C. Schlünder, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 448 (2006).

    Google Scholar 

  60. B. Kaczer, T. Grasser, Ph. J. Roussel, J. Martin-Martinez, R. O’Connor, B. J. O’Sullivan, G. Groeseneken, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 20 (2008).

    Google Scholar 

  61. A. Kerber, E. Cartier, Bias temperature instability characterization methods, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  62. Y. Z. Hu, D. S. Ang, ans Z. Q. Teo, IEEE T. Electron Dev., 57, 2027, (2010).

    Google Scholar 

  63. BSIM4. Available: www.device.eecs.berkeley.edu/bsim/Files/BSIM4/BSIM460/doc/BSIM460_Manual.pdf

  64. AURORA User’s manual. www.synopsys.com

  65. J. H- Stathis and S. Zafar. Microelectron. Reliab., 46, 270 (2006)

    Google Scholar 

  66. Agilent technologies. Advanced Design System.

    Google Scholar 

  67. T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer, Proc. IEEE Int. Reliab. Phys. Symp., 16 (2010)

    Google Scholar 

  68. S. M. Amoroso, L. Gerrer, S. Markov, F. Adamu-Lema and A. Asenov., Proc. of the European Solid-State Device Research Conference (ESSDERC), 109 (2012).

    Google Scholar 

  69. B. Kaczer, Ph.J. Roussel, T. Grasser and G. Groeseneken, IEEE Electron Dev. Letters, 31, 411(2010).

    Article  Google Scholar 

  70. H. Reisinger, T. Grasser, W. Gustin and C. Schlünder, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 7, (2010)

    Google Scholar 

  71. M. Toledano-Luque, B. Kaczer, Characterization of individual traps in high-κ oxides, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  72. M. Toledano-Luque, B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco and G. Groeseneken, J. Vac. Sci. Technol. B 31, 01A114 (2013).

    Google Scholar 

  73. T. Grasser, P.-J. Wagner, H. Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer, Int. Electron Devices Meeting Tech. Dig., 27.4.1 (2011).

    Google Scholar 

  74. N. Ayala, J. Martin-Martinez, R. Rodriguez, M. Nafria and X. Aymerich, Proc. of the European Solid-State Device Research Conference (ESSDERC), 266 (2012).

    Google Scholar 

  75. J. Martin-Martinez, R. Rodriguez, M. Nafria, X. Aymerich, B. Kaczer and G. Groeseneken., Proc. of the European Solid-State Device Research Conference (ESSDERC), 55 (2008)

    Google Scholar 

  76. B. Kazcer, T. Grasser, P. J. Roussel, J. Martin-Martinez, R. O’Connor, B. J. O’Sullivan and G. Groeseneken, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 20 (2008).

    Google Scholar 

  77. R. Fernandez, B. Kazcer, A. Nackaerts, S. Demuynck, R. Rodriguez, M. Nafria and G.Groeseneken, Int. Electron Devices Meeting Tech. Dig., 1 (2004).

    Google Scholar 

  78. Ring Oscillator Based Test Structure for NBTI Analysis M.B. Ketchen, M. Bhushan, R. Bolam, Microelectronic Test Structures, ICMTS ‘07. IEEE International Conference on, 42 (2007).

    Google Scholar 

  79. B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, Ph.J. Roussel and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 55 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish MINECO (TEC2010-16126) and by the Generalitat de Catalunya (2009 SGR-783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martin-Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin-Martinez, J., Rodriguez, R., Nafria, M. (2014). Simulation of BTI-Related Time-Dependent Variability in CMOS Circuits. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_30

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics