Skip to main content

Charge Trapping in MOSFETS: BTI and RTN Modeling for Circuits

  • Chapter
  • First Online:
Bias Temperature Instability for Devices and Circuits

Abstract

This chapter presents experimental investigation and statistical modeling of charge trapping in the context of random telegraph noise (RTN) and bias temperature instability (BTI). The goal is to develop circuit (electrical) level models to support circuit designers. The developed modeling approach is based on discrete device physics quantities, which are shown to cause statistical variability in the electrical behavior of MOSFETs. Besides evaluating the average behavior, the modeling approach here proposed allows the derivation of statistically relevant parameters. It allows the derivation of an analytical formulation for the both noise (RTN) and aging (BTI) behavior. Monte Carlo simulations are also discussed and presented. Good agreement between experimental data, Monte Carlo simulations, and model is found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G Wirth et al. “Modeling of Statistical Low-Frequency Noise of Deep-Submicron MOSFETs”, IEEE Trans. Electron Dev., 52, p. 1576 (2005).

    Google Scholar 

  2. G Wirth, R da Silva and R Brederlow. “Statistical Model for the Circuit Bandwidth Dependence of Low-Frequency Noise in Deep-Submicrometer MOSFETs”, IEEE Trans. Electron Dev., 54, p. 340–345 (2007).

    Google Scholar 

  3. G Wirth et al. “Statistical model for MOSFET low-frequency noise under cyclo-stationary conditions” Int Electron Dev Meeting - IEDM 2009, p. 30.5.1 (2009).

    Google Scholar 

  4. G Wirth and R da Silva, “Low-Frequency Noise Spectrum of Cyclo-Stationary Random Telegraph Signals”, Electrical Eng., 90, p. 435 (2008).

    Google Scholar 

  5. R da Silva, G Wirth and L Brusamarello. “An appropriate model for the noise power spectrum produced by traps at the Si SiO interface: a study of the influence of a time-dependent Fermi level. Journal of Statistical Mechanics” J. of Statistical Mechanics. Theory and Experiment, 2008, p. P10015 (2008).

    Google Scholar 

  6. R Brederlow et al. “Low Frequency Noise Considerations for CMOS Analog Circuit Design” Proceedings of the 2005 Int. Conf. on Noise and Fluctuations (ICNF). p. 703 (2005).

    Google Scholar 

  7. R Brederlow, J Koh and R Thewes. “A physics-based low frequency noise model for MOSFETs under periodic large signal excitation” Solid-State El., 50, p. 668 (2006).

    Google Scholar 

  8. I Bloom and Y Nemirovsky. “1/f noise reduction of metal‐oxide‐semiconductor transistors by cycling from inversion to accumulation” Appl Phys Lett, 58, p.1664 (1991).

    Google Scholar 

  9. B Dierickx and E Simoen. “The decrease of “random telegraph signal” noise in metal‐oxide‐semiconductor field‐effect transistors when cycled from inversion to accumulation”. J Appl Phys, 71, p. 2028 (1992).

    Google Scholar 

  10. M Ertürk, T Xia and W Clark “Gate voltage dependence of mosfet 1/f noise statistics” IEEE Elec Dev Let, 28 p. 812 (2007).

    Google Scholar 

  11. A van der Wel et al. “Relating random telegraph signal noise in metal-oxide-semiconductor transistors to interface trap energy distribution” Appl Phys Lett., 87, p. 183507 (2005).

    Google Scholar 

  12. S Machlup, “Noise in semiconductors: spectrum of a twoparameter random signal” J Appl Phys, 35, p. 341 (1954).

    Google Scholar 

  13. A Roy and C Enz, “Analytical modeling of large-signal cyclo-stationary low-frequency noise with arbitrary periodic input”, IEEE Trans. Electron Dev., 54, p.2537 (2007).

    Google Scholar 

  14. M Kirton and M Uren “Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/ƒ) noise” Adv. in Phys., 38, p. 367 (1989).

    Google Scholar 

  15. S Ekbote et al., “45nm low-power CMOS SoC technology with aggressive reduction of random variation for SRAM and analog transistors”, VLSI Tech. Symp., p. 160 (2008).

    Google Scholar 

  16. V Camargo et al. “Impact of rdf and rts on the performance of sram cells” J. of Comput. Electronics, p. 122 (2010).

    Google Scholar 

  17. K.K. Hung et al. “A physics-based mosfet noise model for circuit simulators” IEEE Trans. Electron Dev., 37 p. 1323 (1990).

    Article  Google Scholar 

  18. T. Sato, et al., “A device array for efficient bias temperature instability measurements,” ESSDERC, pp. 143–146, 2011.

    Google Scholar 

  19. W. Wang et al. “Compact modeling and simulation of circuit reliability for 65 nm CMOS technology,” IEEE Trans. Dev. Mat. Reliab., 7, p. 509 (2007).

    Article  Google Scholar 

  20. R da SILVA and G Wirth. “Logarithmic behavior of the degradation dynamics of metal oxide semiconductor devices”, Journal of Statistical Mechanics, v. P04025, p. 01 (2010).

    Google Scholar 

  21. G Wirth, R da Silva, and B Kaczer “Statistical model for mosfet bias temperature instability component due to charge trapping” IEEE Trans. on Electron Dev., 58, p.2743 (2011).

    Google Scholar 

  22. T. L. Tewksbury and H.-S. Lee, “Characterization, modeling and minimization of transient threshold voltage shifts in MOSFETs” IEEE J. Solid-State Circ., 29, p. 239 (1994).

    Article  Google Scholar 

  23. D. K. Schroder, “Negative bias temperature instability: What do we understand?” Microel. Reliab., 47, p. 841 (2007).

    Article  Google Scholar 

  24. V. Huard et al. “NBTI degradation: From Transistor to SRAM Arrays,” Proc. Int. Rel. Phys. Symp., p. 289 (2008).

    Google Scholar 

  25. S. E. Rauch, “Review and reexamination of reliability effects related to NBTI statistical variations” IEEE Trans Dev. Mat. Rel., 7, p. 524 (2007).

    Article  Google Scholar 

  26. M.A. Alam et al. “A comprehensive model for pmos nbti degradation: recent progress” Microel. Reliab. p. 853 (2007).

    Google Scholar 

  27. B. Kaczer et al. “NBTI from the perspective of defect states with widely distributed times,” Proc. Int. Rel. Phys. Symp., p. 55 (2009).

    Google Scholar 

  28. Reisinger et al. “The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress” Proc. Int. Rel. Phys. Symp., p.7 (2010).

    Google Scholar 

  29. V. Huard et al. “New characterization and modeling approach for NBTI degradation from transistor to product level”. Int Electron Dev Meeting, p. 797 (2007).

    Google Scholar 

  30. T Grasser and B Kaczer, “Evidence That Two Tightly Coupled Mechanisms Are Responsible for Negative Bias Temperature Instability in Oxynitride MOSFETs”, IEEE Trans. on Electron Dev., 56, p. 1056 (2009).

    Google Scholar 

  31. T. Grasser et al. “Switching oxide traps as the missing link between negative bias temperature instability and random telegraph noise”, Int. Electron Dev. Meeting, p. 729 (2009).

    Google Scholar 

  32. B. Kaczer et al. “Ubiquitous Relaxation in BTI stressing—New Evaluation and Insights”, Proc. Int. Reliab. Phys. Symp., p. 20 (2008).

    Google Scholar 

  33. Z. Liu, B. W. McGaughy, and J. Z. Ma, “Design tools for reliability analysis,” DACDesing Aut. Conf., p. 182 (2006).

    Google Scholar 

  34. M. Denais et al. “On-the-fly characterization of nbti in ultra-thin gate oxide pmosfets” Int. Elec. Dev. Meet., p. 109 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Wirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wirth, G., Cao, Y., Velamala, J.B., Sutaria, K.B., Sato, T. (2014). Charge Trapping in MOSFETS: BTI and RTN Modeling for Circuits. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics