Skip to main content

On the Microscopic Limit of the RD Model

  • Chapter
  • First Online:
Bias Temperature Instability for Devices and Circuits

Abstract

The popular reaction–diffusion model for the negative bias temperature instability is discussed from the viewpoint of stochastic chemical kinetics. We present a microscopic formulation of the reaction–diffusion model based on the reaction–diffusion master equation and solve it using the stochastic simulation algorithm. The calculations are compared to the macroscopic version as well as established experimental data. The degradation predicted by the microscopic reaction–diffusion model strongly deviates from the macroscopic version and the experimentally observed behavior. Those deviations are explained as necessary consequences of the physical processes involved. The presented results show the impact of the unphysical assumptions in the reaction–diffusion model. Further, we generally question the suitability of the mathematical framework of reaction rate equations for a reactive-diffusive system at the given particle densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our earlier studies on two-dimensional systems this exponent was around 0. 8 [19], owing to the topology dependence of this regime.

References

  1. K. Jeppson, C. Svensson, J.Appl.Phys. 48(5), 2004 (1977)

    Article  Google Scholar 

  2. D.K. Schroder, Microelectronics Reliability 47, 841 (2007)

    Article  Google Scholar 

  3. H. Kufluoglu, M. Alam, IEEE Trans.Electron Devices 53(5), 1120 (2006). DOI 10.1109/TED.2006.872098

    Article  Google Scholar 

  4. T. Grasser, W. Goes, B. Kaczer, IEEE Trans.Device and Materials Reliability 8(1), 79 (2008). DOI 10.1109/TDMR.2007.912779

    Article  Google Scholar 

  5. S. Ogawa, N. Shiono, Physical Review B 51(7), 4218 (1995)

    Article  Google Scholar 

  6. B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, M. Goodwin, In Proc. Intl.Rel.Phys.Symp. (2005), pp. 381–387

    Google Scholar 

  7. H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, C. Schlünder, In Proc. Intl.Rel.Phys.Symp. (2006), pp. 448–453

    Google Scholar 

  8. T. Grasser, W. Goes, V. Sverdlov, B. Kaczer, In Proc. Intl.Rel.Phys.Symp. (2007), pp. 268–280. DOI 10.1109/RELPHY.2007.369904

    Google Scholar 

  9. T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.J. Wagner, F. Schanovsky, J. Franco, P.J. Roussel, M. Nelhiebel, In Proc. Intl.Electron Devices Meeting (2010), pp. 82–85

    Google Scholar 

  10. S. Mahapatra, V.D. Maheta, A.E. Islam, M.A. Alam, IEEE Trans.Electron Devices 56(2), 236 (2009)

    Article  Google Scholar 

  11. S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi, A. Jain, M. Alam, In Proc. Intl.Rel.Phys.Symp. (2011), pp. 6A.3.1 –6A.3.10. DOI 10.1109/IRPS.2011.5784544

    Google Scholar 

  12. S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi, M. Alam, In Proc. Intl.Symp. on Physical and Failure Analysis of Integrated Circuits (2011), pp. 1–7. DOI 10.1109/IPFA.2011.5992794

    Google Scholar 

  13. K. Joshi, S. Mukhopadhyay, N. Goel, S. Mahapatra, In Proc. Intl.Rel.Phys.Symp (2012), pp. 5A.3.1–10

    Google Scholar 

  14. A. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra, M. Alam, IEEE Trans.Electron Devices 54(9), 2143 (2007). DOI 10.1109/TED.2007.902883

    Article  Google Scholar 

  15. A.E. Islam, H. Kufluoglu, D. Varghese, M.A. Alam, Appl.Phys.Lett. 90(8), 083505 (2007). DOI: 10.1063/1.2695998. URL http://dx.doi.org/doi/10.1063/1.2695998

  16. H. Kufluoglu, M. Alam, IEEE Trans.Electron Devices 54(5), 1101 (2007)

    Article  Google Scholar 

  17. A. Islam, H. Kufluoglu, D. Varghese, M. Alam, Appl.Phys.Lett. 90(1), 083505 (2007)

    Article  Google Scholar 

  18. F. Schanovsky, T. Grasser, In Proc. Intl.Integrated Reliability Workshop (2011), pp. 17–21

    Google Scholar 

  19. F. Schanovsky, T. Grasser, In Proc. Intl.Rel.Phys.Symp (2012), pp. XT.10.1–6

    Google Scholar 

  20. A. Stesmans, B. Nouwen, V.V. Afanas’ev, Phys. Rev. B 58, 15801 (1998). DOI 10.1103/PhysRevB.58.15801. URL http://link.aps.org/doi/10.1103/PhysRevB.58.15801

  21. A. Islam, M. Alam, J.Comp.Elect. pp. 1–11 (2011). URL http://dx.doi.org/10.1007/s10825-011-0369-4. 10.1007/s10825-011-0369-4

  22. D.A. McQuarrie, J.Appl.Prob 4(3), 413 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Hänggi, P. Talkner, M. Borkovec, Rev.Mod.Phys 62(2), 251 (1990)

    Article  Google Scholar 

  24. S. Torquato, C.L.Y. Yeong, J.Chem.Phys. 106, 8814 (1997)

    Article  Google Scholar 

  25. S.S. Andrews, D. Bray, Phys.Biol. 1, 137 (2004)

    Article  Google Scholar 

  26. R. Erban, S.J. Chapman, Phys.Biol. 6, 046001 (2009)

    Article  Google Scholar 

  27. S.A. Isaacson, D. Isaacson, Physical Review E 80, 066106 (2009)

    Article  Google Scholar 

  28. D. Fange, O.G. Berg, P. Sjöberg, J. Elf, Proc.Nat.Acad.Sci. 107(46), 19820 (2010)

    Article  MATH  Google Scholar 

  29. G. Malavasi, M.C. Menziani, A. Pedone, U. Segre, Journal of Non-Crystalline Solids 352(3), 285 (2006). DOI 10.1016/j.jnoncrysol.2005.11.022. URL http://www.sciencedirect.com/science/article/pii/S0022309305007994

    Google Scholar 

  30. P.E. Blöchl, Physical Review B 62(10), 6158 (2000)

    Article  Google Scholar 

  31. A. Bongiorno, L. Colombo, F. Cargnoni, Chem.Phys.Lett. 264, 435 (1997)

    Article  Google Scholar 

  32. D. Gillespie, J.Comp.Phys. 22, 403 (1976)

    Article  MathSciNet  Google Scholar 

  33. D.T. Gillespie, in Proc. Int. Conf. Form. Meth. Sys. Bio. (Springer-Verlag, Berlin, Heidelberg, 2008), SFM’08, pp. 125–167. URL http://dl.acm.org/citation.cfm?id=1786698.1786704

  34. T. Grasser, Microelectronics Reliability 52(1), 39 (2012). DOI 10.1016/j.microrel.2011.09.002

    Article  Google Scholar 

  35. V. Huard, M. Denais, C. Parthasarathy, Microelectronics Reliability 46(1), 1 (2006)

    Article  Google Scholar 

  36. B. Tuttle, 61(7), 4417 (2000)

    Google Scholar 

  37. S.T. Pantelides, L. Tsetseris, S. Rashkeev, X. Zhou, D. Fleetwood, R. Schrimpf, Microelectronics Reliability 47(6), 903 (2007). DOI DOI: 10.1016/j.microrel.2006.10.011. URL http://www.sciencedirect.com/science/article/pii/S0026271406003817

  38. G. Panagopoulos, K. Roy, IEEE Trans.Electron Devices 58(8), 2337 (2011). DOI 10.1109/TED.2011.2148720

    Article  Google Scholar 

  39. S. Choi, Y. Park, C.K. Baek, S. Park, in Proc. Simu.Semicond.Proc.Dev. (2012), pp. 185–188

    Google Scholar 

  40. T. Naphade, N. Goel, P.R. Nair, S. Mahapatra, in Proc. Intl.Rel.Phys.Symp. (2013)

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the EC’s FP7 grant agreement NMP.2010.2.5-1 (MORDRED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Schanovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schanovsky, F., Grasser, T. (2014). On the Microscopic Limit of the RD Model. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics