Skip to main content

Abstract

This work reviews the recent progress in understanding defects in gate oxides, including acceptor-like electron traps, donor-like hole traps, and process-induced positive charges. Traps can be either as-grown or generated by electrical stresses and their differences will be pointed out. The physical mechanism responsible for trap creation will be examined and the two damaging species are identified: hydrogenous species and free holes in oxides. The key properties of traps will be reported, including trapping kinetics, capture cross sections, effective densities, energy levels, and physical locations. The impact of different types of traps on device performance will be discussed. The dielectrics covered by this work include SiO2, SiON, HfO2/SiON, and HfSiON/SiON and attentions will be paid to the similarity and differences between SiON and Hf-dielectric/SiON stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. M. Terman, Solid-State Electron. 5, 285 (1962).

    Article  Google Scholar 

  2. B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, J. Electrochem. Soc. 114, 266 (1967).

    Article  Google Scholar 

  3. D. J. DiMaria, in The Physics of SiO2 and its Interface, S. T. Pantelides, Ed. New York: Pergamon, 160 (1978).

    Google Scholar 

  4. W. Weber and R. Thewes, Semicond. Sci. Technol. 10, 1432 (1995).

    Article  Google Scholar 

  5. J. F. Zhang and W. Eccleston, IEEE Trans. Elec. Dev. 42, 1269 (1995).

    Article  Google Scholar 

  6. R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel, and H. E. Maes, IEEE Trans. Elec. Dev. 45, 904 (1998).

    Article  Google Scholar 

  7. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P. J. Wagner, F. Schanovsky, J. Franco, M. T. Luque, M. Nelhiebel, IEEE Trans. Elec. Dev. 58, 3652 (2011).

    Article  Google Scholar 

  8. J. F. Zhang, Microelectron Eng. 86, 1883 (2009).

    Article  Google Scholar 

  9. B. J. Cheng, A. R. Brown, and A. Asenov, IEEE Elec. Dev. Lett. 32, 740 (2011).

    Article  Google Scholar 

  10. G. Bersuker, J. H. Sim, C. S. Park, C. D. Young, S. Nadkarni, R. Choi, and B. H. Lee, in Proc. IRPS, 179 (2006).

    Google Scholar 

  11. K. O. Jeppson and C. M. Svensson, J. Appl. Phys. 48, 2004 (1977).

    Article  Google Scholar 

  12. S. Ogawa, M. Shimaya, and N. Shiono, J. Appl. Phys. 77, 1137 (1995).

    Article  Google Scholar 

  13. M. A. Alam, in Proc. IEDM Tech. Dig. 345 (2003).

    Google Scholar 

  14. S. Mahapatra, V. D. Maheta, A. E. Islam and M. A. Alam, IEEE Trans. Elec. Dev. 56, 236 (2009).

    Article  Google Scholar 

  15. Z. Q. Teo, D. S. Ang, and C. M. Ng, IEEE Electron Dev. Lett. 31, 269 (2010).

    Article  Google Scholar 

  16. T. Grasser, P. J. Wagner, H. Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebel and B. Kaczer, in Proc. IEDM, 618 (2011).

    Google Scholar 

  17. H. Reisinger, T. Grasser, K. Ermisch, H. Nielen, W. Gustin and C. Schlunder, in Proc. IRPS, 597 (2011).

    Google Scholar 

  18. T. Grasser, B. Kaczer, W. Goes, Th. Aichinger, Ph. Hehenberger and M. Nelhiebel, in Proc. IRPS, 33 (2009).

    Google Scholar 

  19. Z. Ji, L. Lin, J. F. Zhang, B. Kaczer, and G. Groeseneken, IEEE Trans. Elec. Dev. 57, 228 (2010).

    Article  Google Scholar 

  20. W. D. Zhang, J. F. Zhang, M. J. Lalor, D. R. Burton, G. Groeseneken and R. Degraeve, Semicond. Sci. Technol. 18, 174 (2003).

    Article  Google Scholar 

  21. W. D. Zhang, J. F. Zhang, M. Lalor, D. Burton, G. Groeseneken, and R. Degraeve, Microelectronic Eng. 59, 89 (2001).

    Article  Google Scholar 

  22. I.C. Chen, S. Holland, C. Hu, J. Appl. Phys. 61, 4544 (1987).

    Article  Google Scholar 

  23. D. J. Dumin, J. R. Maddux, R. S. Scott, R. Subramoniam, IEEE Trans. Elec. Dev. ED-41, 1570 (1994).

    Article  Google Scholar 

  24. D. J. DiMaria, J. H. Stathis, J. Appl. Phys. 89, 5015 (2001).

    Article  Google Scholar 

  25. J. F. Zhang, S. Taylor, W. Eccleston, J. Appl. Phys. 71, 725 (1992).

    Article  Google Scholar 

  26. M. H. Chang and J. F. Zhang, Semicond. Sci. and Technol. 19, 1333 (2004).

    Article  Google Scholar 

  27. R. C. Hughes, Solid-State Electron. 21, 251 (1978).

    Article  Google Scholar 

  28. N. S. Saks, R. B. Klein, and D. L. Griscom, IEEE Trans. Nuclear Sci. 35, 1234 (1988).

    Article  Google Scholar 

  29. W. D. Zhang, J. F. Zhang, C. Z. Zhao, M. H. Chang, G. Groeseneken and R. Degraeve, IEEE Elec. Dev. Lett. 27, 393 (2006).

    Article  Google Scholar 

  30. M. H. Chang, J. F. Zhang, and W. D. Zhang, IEEE Trans. Elec. Dev. 53, 1347 (2006).

    Article  Google Scholar 

  31. D. R. Walters and J. J. van der Schoot, J. Appl. Phys. 58, 831(1985).

    Article  Google Scholar 

  32. T. H. Ning, J. Appl. Phys. 47, 3203 (1976).

    Article  Google Scholar 

  33. B. Benbakhti, J. F. Zhang, Z. Ji, W. Zhang, J. Mitard, B. Kaczer, G. Groeseneken, S. Hall, J. Robertson, and P. Chalker, IEEE Elec. Dev. Lett. 33, 1681 (2012).

    Article  Google Scholar 

  34. R. F. DekKeersmaecker and D. J. DiMaria, J. Appl. Phys. 51, 1085 (1980).

    Article  Google Scholar 

  35. E. H. Nicollian, C N. Berglund, P. F. Schmidt, and J. M. Andrews, J. Appl. Phys. 42, 5654 (1971).

    Google Scholar 

  36. P. Balk, Paper 111, The Electrochem. Soc. Meeting, Buffalo, NY, Oct. 10–14 (1965).

    Google Scholar 

  37. J. F. Zhang, S. Taylor, and W. Eccleston, J. Appl. Phys. 71, 5989 (1992).

    Article  Google Scholar 

  38. J. F. Zhang, S. Taylor, and W. Eccleston, J. Appl. Phys. 72, 1429 (1992).

    Article  Google Scholar 

  39. C. Z. Zhao, M. B. Zahid, J. F. Zhang, G. Groeseneken, R. Degraeve, and S. De Gendt, Microelectronic Eng. 80, 366 (2005).

    Article  Google Scholar 

  40. C. Z. Zhao, J. F. Zhang, M. B. Zahid, B. Govoreanu, G. Groeseneken, and S. De Gendt, J. Appl. Phys. 100, Art. no.093716 (2006).

    Google Scholar 

  41. Z. Ji, J. F. Zhang, W. Zhang, G. Groeseneken L. Pantisano, S. De Gendt, M. M. Heyns, Appl. Phys. Lett. 95, Art. No. 263502 (2009).

    Google Scholar 

  42. J. F. Zhang, C. Z. Zhao, M. B. Zahid, G. Groeseneken, R. Degraeve, and S. De Gendt, IEEE Elec. Dev. Lett. 27, 817 (2006).

    Article  Google Scholar 

  43. X. F. Zheng, W. D. Zhang, B. Govoreanu, J. F. Zhang, and J. Van Houdt, IEEE Trans. Elect. Dev. 57, 2484 (2010).

    Article  Google Scholar 

  44. M. B. Zahid, R. Degraeve, J. F. Zhang, G. Groeseneken, Microelectronic Eng. 84, 1951 (2007).

    Article  Google Scholar 

  45. J. F. Zhang, H. K. Sii, G. Groeseneken, and R. Degraeve, IEEE Trans. Elec. Dev. 47, 378 (2000).

    Article  Google Scholar 

  46. J. F. Zhang, I. S. Al-kofahi, and G. Groeseneken, J. Appl. Phys. 83, 843 (1998).

    Article  Google Scholar 

  47. J. F. Zhang, H. K. Sii, G. Groeseneken, and R. Degraeve, IEEE Trans. Elec. Dev. 48, 1127 (2001).

    Article  Google Scholar 

  48. J. F. Zhang, H. K. Sii, A. H. Chen, C. Z. Zhao, M. J. Uren, G. Groeseneken and R. Degraeve, Semicond. Sci. and Technol. 19, L1 (2004).

    Article  Google Scholar 

  49. T. Grasser, B. Kaczer, W. Goes, Th. Aichinger, Ph. Hehenberger, M. Nelhiebel, Microelectronic Eng. 86, 1876 (2009).

    Google Scholar 

  50. J. F. Zhang, C. Z. Zhao, G. Groeseneken, R. Degraeve, J. N. Ellis, and C. D. Beech, Solid-State Electronics 46, 1839 (2002).

    Article  Google Scholar 

  51. H. S. Witham and P. M. Lenahan, Appl. Phys. Lett. 51, 1007 (1987).

    Article  Google Scholar 

  52. J. F. Zhang, C. Z. Zhao, G. Groeseneken, and R. Degraeve J. Appl. Phys. 93, 6107 (2003).

    Google Scholar 

  53. D. J. DiMaria, Z. A. Weinberg, and J. M. Aitken, J. Appl. Phys. 48, 898 (1977).

    Article  Google Scholar 

  54. I. S. Al-kofahi, J. F. Zhang and G. Groeseneken, J. Appl. Phys. 81, 2686 (1997).

    Article  Google Scholar 

  55. J. F. Zhang, Z. Ji, M. H. Chang, B. Kaczer, and G. Groeseneken, in Proc. IEDM Tech. Dig. 817 (2007).

    Google Scholar 

  56. J. F. Zhang, H. K. Sii, R. Degraeve, and G. Groeseneken, J. Appl. Phys. 87, 2967 (2000).

    Article  Google Scholar 

  57. M. M. Heyns and R. F. De Keersmaecker, Mater. Res. Soc. Symp. Proc. 105, 205 (1988).

    Article  Google Scholar 

  58. C. Z. Zhao and J. F. Zhang, J. Appl. Phys. 97, Art. no. 073703 (2005).

    Google Scholar 

  59. C. Z. Zhao, J. F. Zhang, G. Groeseneken, R. Degraeve, J. N. Ellis, and C. D. Beech, J. Appl. Phys. 90, 328 (2001).

    Article  Google Scholar 

  60. C. Z. Zhao, J. F. Zhang, M. B. Zahid, G. Groeseneken, R. Degraeve, and S. De Gendt, Appl. Phys. Lett. 89, Art.No. 023507 (2006).

    Google Scholar 

  61. J. F. Zhang, C. Z. Zhao, A. H. Chen, G. Groeseneken and R. Degraeve, IEEE Trans. Elec. Dev. 51, 1267 (2004).

    Article  Google Scholar 

  62. C. Z. Zhao, J. F. Zhang, G. Groeseneken and R. Degraeve, IEEE Trans. Elec. Dev. 51, 1274 (2004).

    Article  Google Scholar 

  63. M. H. Chang and J. F. Zhang, in Proc. ECS Symp. Silicon nitride, Silicon Dioxide Thin Insulating Films, and Other Emerging Dielectrics VIII, PV 2005–01, 293 (2005).

    Google Scholar 

  64. M. H. Chang and J. F. Zhang, J. Appl. Phys. 101, Art. no. 024516 (2007).

    Google Scholar 

  65. J. F. Zhang, M. H. Chang, and G. Groeseneken, IEEE Elec. Dev. Lett. 28, 298 (2007).

    Article  Google Scholar 

  66. C. Z. Zhao, J. F. Zhang, M. H. Chang, A. R. Peaker, S. Hall, G. Groeseneken, L. Pantisano, S. De Gendt, and M. Heyns, IEEE Trans. Elec. Dev. 55, 1647 (2008).

    Article  Google Scholar 

  67. J. F. Zhang, M. H. Chang, Z. Ji, L. Lin, I. Ferain, G. Groeseneken, L. Pantisano, S. De Gendt, and M. M. Heyns, IEEE Elec. Dev. Lett. 29, 1360 (2008).

    Article  Google Scholar 

  68. D. R. Young, E. A. Irene, D. J. DiMaria, R. F. De Keersmaecker, and H. Z. Massoud, J. Appl. Phys. 50, 6366 (1979).

    Article  Google Scholar 

  69. D. M. Fleetwood, Microelectron. Reliab. 42, 523 (2002).

    Article  Google Scholar 

  70. S. K. Lai and D. R. Young, J. Appl. Phys. 52, 6231 (1981).

    Article  Google Scholar 

  71. A. J. Lelis and T. R. Oldham, IEEE Trans. Nucl. Sci. 41, 1835 (1994).

    Article  Google Scholar 

  72. Y. Gao, D. S. Ang, C. D. Young, and G. Bersuker, Proc. IRPS 5A.5.1 (2012).

    Google Scholar 

  73. Z. Ji, J. F. Zhang, M. H. Chang, B. Kaczer, and G. Groeseneken, IEEE Trans. Elec. Dev. 56, 1086 (2009).

    Article  Google Scholar 

  74. M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier,Y. Rey-Tauriac, and N. Revil, in IEDM Tech. Dig., 109 (2004).

    Google Scholar 

  75. T. Yang, M. F. Li, C. Shen, C. H. Ang, C. Zhu, Y.-C. Yeo, G. Samudra, S. C. Rustagi, M. B. Yu, and D. L. Kwong, in VLSI Symp. Tech. Dig., 92 (2005).

    Google Scholar 

  76. A. E. Islam, E. N. Kumar, H. Das, S. Purawat, V. Maheta, H. Aono, E. Murakami, S. Mahapatra, and M. A. Alam, in IEDM Tech. Dig., 805 (2007).

    Google Scholar 

  77. J. F. Zhang, Z. Ji, L. Lin, and W. Zhang, Proc. of IEEE 10th Int. Conf. on Solid-State and Integrated-Circuit Technol., 1600 (2010).

    Google Scholar 

  78. E. N. Kumar, V. D. Maheta, S. Purawat, A. E. Islam, C. Olsen, K. Ahmed, M. A. Alam, and S. Mahapatra, in Proc. IEDM Tech. Dig., 809 (2007).

    Google Scholar 

  79. M. Rafix, X. Garros, G. Ribes, G. Ghibaudo, C. hobbs, A. Zauner, M. Muller, V. Huard, C. Ouvrard, in Proc. IEDM Tech. Dig., 825 (2007).

    Google Scholar 

  80. J. F. Zhang, C. Z. Zhao, G. Groeseneken, R. Degraeve, J. N. Ellis, and C. D. Beech, J. Appl. Phys. 90, 1911 (2001).

    Article  Google Scholar 

  81. C. Z. Zhao, J. F. Zhang, M. H. Chang, A. R. Peaker, S. Hall, G. Groeseneken, L. Pantisano, S. De Gendt, and M. Heyns, J. Appl. Phys. 103, Art. No. 014507 (2008).

    Google Scholar 

  82. M. H. Chang, C. Z. Zhao, Z. Ji, J. F. Zhang, G. Groeseneken, L. Pantisano, S. De Gendt, M. M. Heyns, J. Appl. Phys. 105, Art. no. 054505 (2009).

    Google Scholar 

  83. K. Vanheusden, W. L. Warren, R. A. B. Devine, D. M. Fleetwood, J. R. Schwank, M. R. Shaneyfelt, P. S. Winokur, and Z. J. Lemnios, Nature 386, 587 (1997).

    Article  Google Scholar 

  84. D. S. Ang, Understanding negative-bias temperature instability from dynamic stress experiments, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  85. S. Mahapatra, A comprehensive modeling framework for DC and AC NBTI, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  86. T. Grasser, The capture/emission time map approach to the bias temperature instability, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  87. J. P. Campbell, P. M. Lenahan, Atomic scale defects associated with the negative bias temperature instability, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

  88. A. Kerber, E. Cartier, Bias temperature instability characterization methods, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, Heidelberg, 2013).

    Google Scholar 

Download references

Acknowledgments

The author acknowledges the contribution of I. S. Al-Kofahi, H. K. Sii, W. Zhang, C. Z. Zhao, M. H. Chang, Z. Ji, X. F. Zheng, M. B. Zahid, L. Lin, M. Duan, B. Tang, and B. Benbakhti of Liverpool John Moores University and G. Groeseneken, B. Kaczer, R. Degraeve, L. Pantisano, S. De Gendt, and M. Heyns of IMEC. Test samples were supplied by IMEC. This work was funded by the EPSRC of UK under the grant numbers of EP/C003071/1, EP/C003098/1, EP/C003101/1, and EP/I012966/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian F. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, J.F. (2014). Oxide Defects. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics