Skip to main content

Intravital Real-Time Confocal Laser Scanning Microscopy for the In Situ Evaluation of Nanocarriers

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

Visualization of drug/gene nanocarriers within living tissue is essential for optimization towards clinical applications. In this regard, we have established an intravital real-time confocal laser scanning microscopy (IVRTCLSM) technique with both spatial and temporal resolution for in situ evaluation of nanocarriers. In this chapter, we describe the actual setup of the IVRTCLSM in detail and review several examples analyzing the behavior of nanocarriers. Our new imaging technique can elucidate mechanisms that have not been clarified by conventional methods that require tissue to be disturbed or manipulated ex vivo. IVRTCLSM can thereby ascertain critical barriers residing in a living body and facilitate the development of nanocarriers optimized for drug/gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581–593. doi:10.1038/Nrd1775

    Article  CAS  PubMed  Google Scholar 

  2. Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44(10):999–1008. doi:10.1021/ar200094a

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto Y, Nomoto T, Cabral H, Matsumoto Y, Watanabe S, Christie RJ, Miyata K, Oba M, Ogura T, Yamasaki Y, Nishiyama N, Yamasoba T, Kataoka K (2010) Direct and instantaneous observation of intravenously injected substances using intravital confocal micro-videography. Biomed Opt Express 1(4):1209–1216. doi:10.1364/BOE.1.001209

    Article  PubMed Central  PubMed  Google Scholar 

  4. Nomoto T, Matsumoto Y, Miyata K, Oba M, Fukushima S, Nishiyama N, Yamasoba T, Kataoka K (2011) In situ quantitative monitoring of polyplexes and polyplex micelles in the blood circulation using intravital real-time confocal laser scanning microscopy. J Control Release 151(2):104–109. doi:10.1016/j.jconrel.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  5. Kim HJ, Oba M, Pittella F, Nomoto T, Cabral H, Matsumoto Y, Miyata K, Nishiyama N, Kataoka K (2012) Peg-detachable cationic polyaspartamide derivatives bearing stearoyl moieties for systemic sirna delivery toward subcutaneous bxpc3 pancreatic tumor. J Drug Target 20(1):33–42. doi:10.3109/1061186X.2011.632010

    Article  PubMed  Google Scholar 

  6. Christie RJ, Miyata K, Matsumoto Y, Nomoto T, Menasco D, Lai TC, Pennisi M, Osada K, Fukushima S, Nishiyama N, Yamasaki Y, Kataoka K (2011) Effect of polymer structure on micelles formed between sirna and cationic block copolymer comprising thiols and amidines. Biomacromolecules 12(9):3174–3185. doi:10.1021/bm2006714

    Article  CAS  PubMed  Google Scholar 

  7. Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, Halnaut J, Pittella F, Kim HJ, Nishiyama N, Kataoka K (2012) Targeted polymeric micelles for sirna treatment of experimental cancer by intravenous injection. ACS Nano 6(6):5174–5189. doi:10.1021/nn300942b

    Article  CAS  PubMed  Google Scholar 

  8. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E (1999) Pegylated DNA/transferrin-pei complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 6(4):595–605. doi:10.1038/sj.gt.3300900

    Article  CAS  PubMed  Google Scholar 

  9. Akagi D, Oba M, Koyama H, Nishiyama N, Fukushima S, Miyata T, Nagawa H, Kataoka K (2007) Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther 14(13):1029–1038. doi:3302945 [pii] 10.1038/sj.gt.3302945

    Article  CAS  PubMed  Google Scholar 

  10. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of tgf-beta signaling. Proc Natl Acad Sci USA 104(9):3460–3465. doi:0611660104 [pii] 10.1073/pnas.0611660104

    Article  CAS  PubMed  Google Scholar 

  11. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664. doi:10.1038/nrclinonc.2010.139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823. doi:10.1038/nnano.2011.166

    Article  CAS  PubMed  Google Scholar 

  13. Murakami M, Cabral H, Matsumoto Y, Wu S, Kano MR, Yamori T, Nishiyama N, Kataoka K (2011) Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 3(64):64ra62. doi:10.1126/scitranslmed.3001385

    Article  Google Scholar 

  14. Haubner R, Gratias R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H (1996) Structural and functional aspects of rgd-containing cyclic pentapeptides as highly potent and selective integrin alpha(v)beta(3) antagonists. J Am Chem Soc 118(32):7461–7472

    Article  CAS  Google Scholar 

  15. Kanda T, Sullivan KF, Wahl GM (1998) Histone-gfp fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8(7):377–385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These works were supported by the Core Research Program for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST) (K.K.), the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from the Japan Society for the Promotion of Science (JSPS) (K.K.), and Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology of Japan (Y.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Kataoka Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsumoto, Y. et al. (2013). Intravital Real-Time Confocal Laser Scanning Microscopy for the In Situ Evaluation of Nanocarriers. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_22

Download citation

Publish with us

Policies and ethics