Skip to main content

Long Circulation and Tumor Accumulation

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

Nanoparticles have been employed in cancer management as vectors to deliver chemotherapeutic and/or imaging agents to tumors. Enhanced tumor accumulation occurs by virtue of the long circulation properties of the nanocarrier and the enhanced permeability and retention effect that is characteristic of solid tumors. The versatility of the nanoparticle platform has enabled the design and development of various nanocarriers differing in physicochemical properties such as surface composition, size, charge, and shape. While such properties can influence the pharmacokinetics and biodistribution of a formulation, total tumor deposition can be further impacted by inherent pathophysiology of the tissue. This chapter presents the nature and impact of nanoparticle design on tumor accumulation, particularly in the context of the tumor microenvironment. In vivo barriers, such as opsonization, impaired tumor blood flow, heterogeneous vascular and interstitial permeability impede the effective delivery of nanocarriers and their cargo and are discussed herein, while strategies to overcome them and enhance the effective delivery of nanoparticles are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  2. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7(2):243–254

    CAS  PubMed  Google Scholar 

  3. White SC, Lorigan P, Margison GP, Margison JM, Martin F, Thatcher N, Anderson H, Ranson M (2006) Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer. Br J Cancer 95(7):822–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  6. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592

    Article  CAS  PubMed  Google Scholar 

  7. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239

    Article  CAS  PubMed  Google Scholar 

  9. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2:281–298

    Article  CAS  PubMed  Google Scholar 

  10. Marcucci F, Corti A (2012) How to improve exposure of tumor cells to drugs: promoter drugs increase tumor uptake and penetration of effector drugs. Adv Drug Deliv Rev 64(1):53–68

    Article  CAS  PubMed  Google Scholar 

  11. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187

    Article  CAS  PubMed  Google Scholar 

  12. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133(1):2–3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  14. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89(3):307–314

    Article  CAS  PubMed  Google Scholar 

  15. Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6(3):193–210

    CAS  PubMed  Google Scholar 

  16. Seymour LW, Miyamoto Y, Maeda H, Brereton M, Strohalm J, Ulbrich K, Duncan R (1995) Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur J Cancer 31A(5):766–770

    Article  CAS  PubMed  Google Scholar 

  17. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344

    Article  CAS  PubMed  Google Scholar 

  18. Seymour LW, Ulbrich K, Steyger PS, Brereton M, Subr V, Strohalm J, Duncan R (1994) Tumour tropism and anti-cancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br J Cancer 70(4):636–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Takakura Y, Hashida M (1996) Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res 13(6):820–831

    Article  CAS  PubMed  Google Scholar 

  20. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  PubMed  Google Scholar 

  21. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813

    Article  CAS  PubMed  Google Scholar 

  22. Grantab RH, Tannock IF (2012) Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. BMC Cancer 12:214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Taghian AG, Abi-Raad R, Assaad SI, Casty A, Ancukiewicz M, Yeh E, Molokhia P, Attia K, Sullivan T, Kuter I, Boucher Y, Powell SN (2005) Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications. J Clin Oncol 23(9):1951–1961

    Article  CAS  PubMed  Google Scholar 

  24. Davies Cde L, Berk DA, Pluen A, Jain RK (2002) Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells. Br J Cancer 86(10):1639–1644

    Article  PubMed  Google Scholar 

  25. Au JL, Jang SH, Wientjes MG (2002) Clinical aspects of drug delivery to tumors. J Control Release 78(1–3):81–95

    Article  CAS  PubMed  Google Scholar 

  26. Grantab R, Sivananthan S, Tannock IF (2006) The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res 66(2):1033–1039

    Article  CAS  PubMed  Google Scholar 

  27. Di Paolo A, Bocci G (2007) Drug distribution in tumors: mechanisms, role in drug resistance, and methods for modification. Curr Oncol Rep 9(2):109–114

    Article  PubMed  Google Scholar 

  28. Berk DA, Yuan F, Leunig M, Jain RK (1997) Direct in vivo measurement of targeted binding in a human tumor xenograft. Proc Natl Acad Sci U S A 94(5):1785–1790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62(2):90–99

    Article  CAS  PubMed  Google Scholar 

  31. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743

    CAS  PubMed  Google Scholar 

  32. Li SD, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5(4):496–504

    Article  CAS  PubMed  Google Scholar 

  33. Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503

    Article  CAS  PubMed  Google Scholar 

  34. Chrastina A, Massey KA, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):421–437

    Article  CAS  PubMed  Google Scholar 

  35. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105(38):14265–14270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4(9):546–547

    Article  CAS  PubMed  Google Scholar 

  37. Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8(3):343–357

    Article  CAS  PubMed  Google Scholar 

  38. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  PubMed  Google Scholar 

  39. Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16(2–3):295–309

    Article  CAS  Google Scholar 

  40. Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16(2–3):195–214

    Article  CAS  Google Scholar 

  41. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16(2–3):215–233

    Article  CAS  Google Scholar 

  42. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    Article  CAS  PubMed  Google Scholar 

  43. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066(1):29–36

    Article  CAS  PubMed  Google Scholar 

  44. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) “Stealth” corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3–4):301–313

    Article  CAS  PubMed  Google Scholar 

  45. Stolnik S, Daudali B, Arien A, Whetstone J, Heald CR, Garnett MC, Davis SS, Illum L (2001) The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta 1514(2):261–279

    Article  CAS  PubMed  Google Scholar 

  46. Mosqueira VC, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, Barratt G (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22(22):2967–2979

    Article  CAS  PubMed  Google Scholar 

  47. Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM (2010) Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano 4(11):6629–6638

    Article  CAS  PubMed  Google Scholar 

  48. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603

    Article  CAS  PubMed  Google Scholar 

  49. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  CAS  PubMed  Google Scholar 

  50. Mosqueira VC, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R, Devissaguet JP, Barratt G (2001) Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm Res 18(10):1411–1419

    Article  CAS  PubMed  Google Scholar 

  51. Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48

    Article  CAS  Google Scholar 

  52. Ishida T, Ichihara M, Wang X, Kiwada H (2006) Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release 115(3):243–250

    Article  CAS  PubMed  Google Scholar 

  53. Shiraishi K, Hamano M, Ma H, Kawano K, Maitani Y, Aoshi T, Ishii KJ, Yokoyama M (2012) Hydrophobic blocks of PEG-conjugates play a significant role in the accelerated blood clearance (ABC) phenomenon. J Control Release 165(3):183–190

    Article  PubMed  CAS  Google Scholar 

  54. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 6(4):715–728

    Article  CAS  Google Scholar 

  55. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49(36):6288–6308

    Article  CAS  PubMed  Google Scholar 

  56. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S (2007) Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 70(3):230–242

    Article  PubMed  Google Scholar 

  58. Moghimi SM, Porter CJ, Muir IS, Illum L, Davis SS (1991) Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 177(2):861–866

    Article  CAS  PubMed  Google Scholar 

  59. Seymour LW, Duncan R, Strohalm J, Kopecek J (1987) Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res 21(11):1341–1358

    Article  CAS  PubMed  Google Scholar 

  60. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tabata Y, Murakami Y, Ikada Y (1998) Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection. J Control Release 50(1–3):123–133

    Article  CAS  PubMed  Google Scholar 

  62. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823

    Article  CAS  PubMed  Google Scholar 

  63. Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, Bhattacharya R, Robertson JD, Rotello VM, Reid JM, Mukherjee P (2011) Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 6(9):e24374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gessner A, Lieske A, Paulke B, Muller R (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170

    Article  CAS  PubMed  Google Scholar 

  65. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104(7):2050–2055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33):11613–11618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K (2001) Long-circulating poly(ethylene glycol)-poly(d, l-lactide) block copolymer micelles with modulated surface charge. J Control Release 77(1–2):27–38

    Article  CAS  PubMed  Google Scholar 

  68. Loverde SM, Klein ML, Discher DE (2012) Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv Mater 24(28):3823–3830

    Article  CAS  PubMed  Google Scholar 

  69. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327

    Article  CAS  PubMed  Google Scholar 

  71. Kim Y, Dalhaimer P, Christian DA, Discher DE (2005) Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology 16(7):S484–S491

    Article  PubMed  CAS  Google Scholar 

  72. Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE (2009) Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 6(5):1343–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5(7):5390–5399

    Article  CAS  PubMed  Google Scholar 

  74. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    Article  CAS  PubMed  Google Scholar 

  75. Drummond DC, Noble CO, Guo Z, Hayes ME, Park JW, Ou CJ, Tseng YL, Hong K, Kirpotin DB (2009) Improved pharmacokinetics and efficacy of a highly stable nanoliposomal vinorelbine. J Pharmacol Exp Ther 328(1):321–330

    Article  CAS  PubMed  Google Scholar 

  76. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    CAS  PubMed  Google Scholar 

  77. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Article  CAS  PubMed  Google Scholar 

  78. Gutierrez C, Schiff R (2011) HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 135(1):55–62

    PubMed Central  PubMed  Google Scholar 

  79. Chan C, Scollard DA, McLarty K, Smith S, Reilly RM (2011) A comparison of 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging subcutaneous HER2-positive tumor xenografts in athymic mice using microSPECT/CT or microPET/CT. EJNMMI Res 1(1):15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  PubMed  Google Scholar 

  81. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270(5241):1500–1502

    Article  CAS  PubMed  Google Scholar 

  82. Dunne M, Zheng J, Rosenblat J, Jaffray DA, Allen C (2011) APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes. J Control Release 154(3):298–305

    Article  CAS  PubMed  Google Scholar 

  83. Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42(5):439–462

    Article  CAS  PubMed  Google Scholar 

  84. ElBayoumi TA, Torchilin VP (2009) Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clin Cancer Res 15(6):1973–1980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Fonge H, Huang H, Scollard D, Reilly RM, Allen C (2012) Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles. J Control Release 157(3):366–374

    Article  CAS  PubMed  Google Scholar 

  86. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740

    Article  CAS  PubMed  Google Scholar 

  87. Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65(24):11631–11638

    Article  CAS  PubMed  Google Scholar 

  88. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26(10):552–558

    Article  CAS  PubMed  Google Scholar 

  89. Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99(3):392–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Turk MJ, Waters DJ, Low PS (2004) Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 213(2):165–172

    Article  CAS  PubMed  Google Scholar 

  91. Koukourakis MI, Koukouraki S, Giatromanolaki A, Archimandritis SC, Skarlatos J, Beroukas K, Bizakis JG, Retalis G, Karkavitsas N, Helidonis ES (1999) Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 17(11):3512–3521

    CAS  PubMed  Google Scholar 

  92. Little RF, Wyvill KM, Pluda JM, Welles L, Marshall V, Figg WD, Newcomb FM, Tosato G, Feigal E, Steinberg SM, Whitby D, Goedert JJ, Yarchoan R (2000) Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J Clin Oncol 18(13):2593–2602

    CAS  PubMed  Google Scholar 

  93. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ (2002) Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 20(6):1668–1676

    Article  CAS  PubMed  Google Scholar 

  94. Seynhaeve AL, Hoving S, Schipper D, Vermeulen CE, de Wiel-Ambagtsheer G, van Tiel ST, Eggermont AM, Ten Hagen TL (2007) Tumor necrosis factor alpha mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res 67(19):9455–9462

    Article  CAS  PubMed  Google Scholar 

  95. Karathanasis E, Suryanarayanan S, Balusu SR, McNeeley K, Sechopoulos I, Karellas A, Annapragada AV, Bellamkonda RV (2009) Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology 250(2):398–406

    Article  PubMed  Google Scholar 

  96. Lammers T, Rizzo LY, Storm G, Kiessling F (2012) Personalized nanomedicine. Clin Cancer Res 18(18):4889–4894

    Article  CAS  PubMed  Google Scholar 

  97. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  CAS  PubMed  Google Scholar 

  98. Chaplin DJ, Hill SA, Bell KM, Tozer GM (1998) Modification of tumor blood flow: current status and future directions. Semin Radiat Oncol 8(3):151–163

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki M, Hori K, Abe I, Saito S, Sato H (1981) A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II. J Natl Cancer Inst 67(3):663–669

    CAS  PubMed  Google Scholar 

  100. Hattori Y, Ubukata H, Kawano K, Maitani Y (2011) Angiotensin II-induced hypertension enhanced therapeutic efficacy of liposomal doxorubicin in tumor-bearing mice. Int J Pharm 403(1):178–184

    Article  CAS  PubMed  Google Scholar 

  101. Elizondo FG Jr, Sung C (1996) Effect of angiotensin II on immunotoxin uptake in tumor and normal tissue. Cancer Chemother Pharmacol 39(1):113–121

    Article  CAS  PubMed  Google Scholar 

  102. Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802

    Article  CAS  PubMed  Google Scholar 

  103. Li CJ, Miyamoto Y, Kojima Y, Maeda H (1993) Augmentation of tumour delivery of macromolecular drugs with reduced bone marrow delivery by elevating blood pressure. Br J Cancer 67(5):975–980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Jirtle RL (1988) Chemical modification of tumour blood flow. Int J Hyperthermia 4(4):355–371

    Article  CAS  PubMed  Google Scholar 

  105. Sagar SM, Klassen GA, Barclay KD, Aldrich JE (1993) Tumour blood flow: measurement and manipulation for therapeutic gain. Cancer Treat Rev 19(4):299–349

    Article  CAS  PubMed  Google Scholar 

  106. Zlotecki RA, Baxter LT, Boucher Y, Jain RK (1995) Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation. Microvasc Res 50(3):429–443

    Article  CAS  PubMed  Google Scholar 

  107. Suzuki M, Hori K, Abe I, Saito S, Sato H (1984) Functional characterization of the microcirculation in tumors. Cancer Metastasis Rev 3(2):115–126

    Article  CAS  PubMed  Google Scholar 

  108. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3(3):319–328

    Article  CAS  PubMed  Google Scholar 

  109. Nagamitsu A, Greish K, Maeda H (2009) Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jpn J Clin Oncol 39(11):756–766

    Article  PubMed  Google Scholar 

  110. Seki T, Fang J, Maeda H (2009) Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci 100(12):2426–2430

    Article  CAS  PubMed  Google Scholar 

  111. Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110(4):475–482

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Sacchi A, Gasparri A, Gallo-Stampino C, Toma S, Curnis F, Corti A (2006) Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clin Cancer Res 12(1):175–182

    Article  CAS  PubMed  Google Scholar 

  113. Corti A, Pastorino F, Curnis F, Arap W, Ponzoni M, Pasqualini R (2011) Targeted drug delivery and penetration into solid tumors. Med Res Rev 32(5):1078–1091

    Article  PubMed  CAS  Google Scholar 

  114. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9(5):361–371

    Article  CAS  PubMed  Google Scholar 

  115. Ten Hagen TLM, Van Der Veen AH, Nooijen PTGA, Van Tiel ST, Seynhaeve ALB, Eggermont AMM (2000) Low-dose tumor necrosis factor a augments antitumor activity of stealth liposomal doxorubicin (DOXIL®) in soft tissue sarcoma-bearing rats. Int J Cancer 87(6):829–837

    Article  PubMed  Google Scholar 

  116. Brouckaert P, Takahashi N, van Tiel ST, Hostens J, Eggermont AMM, Seynhaeve ALB, Fiers W, ten Hagen TLM (2004) Tumor necrosis factor α augmented tumor response in B16BL6 melanoma‐bearing mice treated with stealth liposomal doxorubicin (Doxil®) correlates with altered Doxil® pharmacokinetics. Int J Cancer 109(3):442–448

    Article  CAS  PubMed  Google Scholar 

  117. Hoving S, Seynhaeve ALB, van Tiel ST, Eggermont AMM, ten Hagen TLM (2005) Addition of low-dose tumor necrosis factor-a to systemic treatment with STEALTH liposomal doxorubicin (Doxil) improved anti-tumor activity in osteosarcoma-bearing rats. Anti-Cancer Drugs 16(6):667–674

    Article  CAS  PubMed  Google Scholar 

  118. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci USA 104(9):3460–3465

    Article  CAS  PubMed  Google Scholar 

  119. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Kong G, Dewhirst MW (1999) Hyperthermia and liposomes. Int J Hyperthermia 15(5):345–370

    Article  CAS  PubMed  Google Scholar 

  121. Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60(16):4440–4445

    CAS  PubMed  Google Scholar 

  122. Lammers T, Peschke P, Kuhnlein R, Subr V, Ulbrich K, Debus J, Huber P, Hennink W, Storm G (2007) Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems. J Control Release 117(3):333–341

    Article  CAS  PubMed  Google Scholar 

  123. Reinhold H, Endrich B (1986) Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 2(2):111–137

    Article  CAS  PubMed  Google Scholar 

  124. Jain RK, Ward-Hartley K (1984) Tumor blood flow-characterization, modifications, and role in hyperthermia. IEEE Trans Son Ultrason 31(5):504–526

    Article  Google Scholar 

  125. Song C, Park H, Lee C, Griffin R (2005) Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia 21(8):761–767

    Article  CAS  PubMed  Google Scholar 

  126. Park JS, Qiao L, Su ZZ, Hinman D, Willoughby K, McKinstry R, Yacoub A, Duigou GJ, Young CS, Grant S, Hagan MP, Ellis E, Fisher PB, Dent P (2001) Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways. Oncogene 20(25):3266–3280

    Article  CAS  PubMed  Google Scholar 

  127. Chung YL, Jian JJ, Cheng SH, Tsai SY, Chuang VP, Soong T, Lin YM, Horng CF (2006) Sublethal irradiation induces vascular endothelial growth factor and promotes growth of hepatoma cells: implications for radiotherapy of hepatocellular carcinoma. Clin Cancer Res 12(9):2706–2715

    Article  CAS  PubMed  Google Scholar 

  128. Lee YJ, Galoforo SS, Berns CM, Erdos G, Gupta AK, Ways DK, Corry PM (1995) Effect of ionizing radiation on AP-1 binding activity and basic fibroblast growth factor gene expression in drug-sensitive human breast carcinoma MCF-7 and multidrug-resistant MCF-7/ADR cells. J Biol Chem 270(48):28790–28796

    Article  CAS  PubMed  Google Scholar 

  129. Giustini AJ, Petryk AA, Hoopes PJ (2012) Ionizing radiation increases systemic nanoparticle tumor accumulation. Nanomedicine 8(6):818–821

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Koukourakis MI (2000) High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas: rationale for combination with radiotherapy. Acta Oncol 39(2):207–211

    Article  CAS  PubMed  Google Scholar 

  131. Davies CL, Lundstrøm LM, Frengen J, Eikenes L, Bruland ØS, Kaalhus O, Hjelstuen MHB, Brekken C (2004) Radiation improves the distribution and uptake of liposomal doxorubicin (Caelyx) in human osteosarcoma xenografts. Cancer Res 64(2):547–553

    Article  CAS  Google Scholar 

  132. Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67(6):2729–2735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731

    Article  CAS  PubMed  Google Scholar 

  134. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7(6):383–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Tailor TD, Hanna G, Yarmolenko PS, Dreher MR, Betof AS, Nixon AB, Spasojevic I, Dewhirst MW (2010) Effect of pazopanib on tumor microenvironment and liposome delivery. Mol Cancer Ther 9(6):1798–1808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Claes A, Wesseling P, Jeuken J, Maass C, Heerschap A, Leenders WP (2008) Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 7(1):71–78

    Article  CAS  PubMed  Google Scholar 

  137. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051

    CAS  PubMed  Google Scholar 

  138. Eikenes L, Tari M, Tufto I, Bruland OS, de Lange Davies C (2005) Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx) in human osteosarcoma xenografts. Br J Cancer 93(1):81–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Kovar JL, Johnson MA, Volcheck WM, Chen J, Simpson MA (2006) Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model. Am J Pathol 169(4):1415–1426

    Article  CAS  PubMed  Google Scholar 

  140. Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27(31):5287–5297

    Article  CAS  PubMed  Google Scholar 

  141. Lu D, Wientjes MG, Lu Z, Au JL (2007) Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 322(1):80–88

    Article  CAS  PubMed  Google Scholar 

  142. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54(13):3352–3356

    CAS  PubMed  Google Scholar 

  143. Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z (1982) Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res 42(11):4734–4739

    CAS  PubMed  Google Scholar 

  144. Mayhew E, Rustum Y, Vail WJ (1983) Inhibition of liver metastases of M 5076 tumor by liposome-entrapped adriamycin. Cancer Drug Deliv 1(1):43–58

    Article  CAS  PubMed  Google Scholar 

  145. van Hoesel QG, Steerenberg PA, Crommelin DJ, van Dijk A, van Oort W, Klein S, Douze JM, de Wildt DJ, Hillen FC (1984) Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes in the LOU/M Wsl rat. Cancer Res 44(9):3698–3705

    PubMed  Google Scholar 

  146. Storm G, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJ (1987) Influence of lipid composition on the antitumor activity exerted by doxorubicin-containing liposomes in a rat solid tumor model. Cancer Res 47(13):3366–3372

    CAS  PubMed  Google Scholar 

  147. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, Ancukiewicz M, Boucher Y, Jain RK, Xu L (2012) TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A 109(41):16618–16623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50(15):4478–4484

    CAS  PubMed  Google Scholar 

  149. Huxham LA, Kyle AH, Baker JH, Nykilchuk LK, Minchinton AI (2004) Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res 64(18):6537–6541

    Article  CAS  PubMed  Google Scholar 

  150. Shin SJ, Beech JR, Kelly KA (2012) Targeted nanoparticles in imaging: paving the way for personalized medicine in the battle against cancer. Integr Biol (Camb) 5(1):29–42

    Article  CAS  Google Scholar 

  151. Lankelma J, Dekker H, Luque FR, Luykx S, Hoekman K, van der Valk P, van Diest PJ, Pinedo HM (1999) Doxorubicin gradients in human breast cancer. Clin Cancer Res 5(7):1703–1707

    CAS  PubMed  Google Scholar 

  152. Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF (2005) The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 11(24 Pt 1):8782–8788

    Article  CAS  PubMed  Google Scholar 

  153. Karathanasis E, Chan L, Karumbaiah L, McNeeley K, D’Orsi CJ, Annapragada AV, Sechopoulos I, Bellamkonda RV (2009) Tumor vascular permeability to a nanoprobe correlates to tumor-specific expression levels of angiogenic markers. PLoS One 4(6):e5843

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7(6):1899–1912

    Article  CAS  PubMed  Google Scholar 

  157. Huang H, Dunne M, Lo J, Jaffray DA, Allen C (2013) Comparison of computed tomography- and optical image-based assessment of liposome distribution. Mol Imaging 12(3):148–160

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) to C.A., and D.A.J. S.N.E is supported by a fellowship from the CIHR Strategic Training Program in Biological Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Allen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ekdawi, S.N. et al. (2013). Long Circulation and Tumor Accumulation. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_20

Download citation

Publish with us

Policies and ethics