Skip to main content

Genetic Modifications for Pest Resistance

  • Chapter
  • First Online:
Biotechnology of Crucifers

Abstract

Diseases and insect pests are serious threat to the growth and yield of Brassica crops. As such, breeding for resistance to pests has been considered as a major objective in oilseed rape (Brassica napus L.) plant. The traditional method of genetic modification is utilizing the wild species which have resistance to one of diseases or insects to improve the cultivated species by distant hybridization. So far, the availability of resistant sources against pests has been greatly explored in many kinds of wild species. However, the narrow genetic resource (germplasm) also inhibits the development of pest resistant breeding program. On the other hand, with the development of biotechnology, genetic transformation has become possible to bring about quick and dramatic improvements in the tolerance to diseases and insect pests. In the past decades, more and more resistant genes were cloned and characterized, then transferred to cultivated species to obtain the resistant traits. The present chapter focuses on genetic modification of disease and insect pest resistance by conventional hybridization and transgene breeding in Brassica crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amjad MD, Peters C (1992) Survival, development and reproduction of turnip aphids (Homoptera: Aphididae) on oilseeds Brassica. J Econ Entomol 85:2003–2007

    Google Scholar 

  • Barfield DG, Pua EC (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens mediated transformation. Plant Cell Rep 10:308–314

    Article  CAS  Google Scholar 

  • Bartnick S (1968) Cell wall chemistry morphogenesis and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    Article  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behaviour. PNAS 103:10509–10513

    Article  PubMed  CAS  Google Scholar 

  • Bhadoria NS, Jakhmola SS, Dhamdhere SV (1995) Relative susceptibility of mustard cultivars to Lipaphis erysimi in North West Madhya Pradesh (India). J Entomol Res 19:143–146

    Article  Google Scholar 

  • Bhatia V, Uniyal PL, Bhattacharya R (2011) Aphid resistance in Brassica crops: challenges, biotechnological progress and emerging possibilities. Biotechnol Adv 29:879–888

    Article  PubMed  Google Scholar 

  • Brar KS, Sandhu GS (1978) Comparative resistance of different Brassica species/varieties to the mustard aphid (Lipaphis erysimi Kalt.) under natural and artificial conditions. Indian J Agric Res 12:198–200

    Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein, control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131–141

    Article  CAS  Google Scholar 

  • Cao J, Zhao JZ, Tang JD, Shelton AM (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105:258–264

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Shelton AM, Earle ED (2008) Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Rep 27:479–487

    Article  PubMed  CAS  Google Scholar 

  • Chen HJ, Wang SJ, Chen CC, Yeh KW (2006) New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci 171:367–374

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Kumar HGA, Kumar S, Tzean SS, Yeh KW (2007) Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus Paecilomyces javanicus. Curr Microbiol 55:8–13

    Article  PubMed  CAS  Google Scholar 

  • Chevre AM, Eber F, Brun H, Plessis J, Primard C, Renard M (1991) Cytogemetic studies of Brassica napus-Sinapis alba hybrids from ovary culture and protoplast fusion. Attempts to introduce Alternaria resistance into rapeseed. In: Proceedings of the 8th International Rapeseed Conference, Saskatoon, Canada, 346–351

    Google Scholar 

  • Chevre AM, Eber F, This P, Barret P, Tanguy X, Brun H, Delseny M, Renard M (1996) Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napus-B. nigra addition lines. Plant Breed 115:113–118

    Article  CAS  Google Scholar 

  • Chevre AM, Barret P, Eber F, Dupuy P, Brun H, Tanguy X, Renard M (1997) Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet 95:1104–1111

    Article  Google Scholar 

  • Chevre AM, Brun H, Eber F, Letanneur JC, Vallee P, Ermel M, Glais I, Li H, Sivasithamparam K, Barbetti MJ (2008) Stabilization of resistance to Leptosphaeria maculans in Brassica napus – B. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant Dis 92:1208–1214

    Article  Google Scholar 

  • Cho HS, Cao J, Ren JP, Earle ED (2001) Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep 20:1–7

    Article  CAS  Google Scholar 

  • Cole RA (1994a) Locating a resistance mechanism to the cabbage aphid in two wild Brassicas. Entomol Exp Appl 71:23–31

    Article  Google Scholar 

  • Cole RA (1994b) Isolation of a chitin binding lectin, with insecticidal activity in chemically defined synthetic diets, from two wild brassica species with resistance to cabbage aphid, Brevicoryne brassicae. Entomol Exp Appl 72:181–187

    Article  CAS  Google Scholar 

  • Corrado G, Arciello S, Fanti P, Fiandra L, Garonna A, Digilio MC, Lorito M, Giordana B, Pennacchio F, Rao R (2008) The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Res 17:557–571

    Article  PubMed  CAS  Google Scholar 

  • Dickson MH, Petzoldt R (1996) Breeding for resistance to Sclerotinia sclerotiorum in Brassica oleracea. Acta Hortic 407:103–108

    Google Scholar 

  • Ding LC, Hu C, Yeh KW, Wang PJ (1998) Development of insect resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    Article  CAS  Google Scholar 

  • Dixelius C (1999) Inheritance of the resistance to Leptosphaeria maculans of Brassica nigra and B. juncea in near-isogenic lines of B. napus. Plant Breed 118:151–156

    Article  Google Scholar 

  • Dixelius C, Wahlberg S (1999) Resistance to Leptosphaeria maculans is conserved in a specific region of the Brassica B genome. Theor Appl Genet 99:368–372

    Article  Google Scholar 

  • Dong X, Ji R, Guo X, Foster SJ, Chen H, Dong C, Liu Y, Hu Q, Liu S (2008) Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Planta 228:331–340

    Article  PubMed  CAS  Google Scholar 

  • Downey RK, Rimmer SR (1993) Agronomic improvement in oilseed Brassica. Adv Agron 50:1–50

    Article  Google Scholar 

  • Dusabenyagasani M, Fernando WGD (2008) Development of a SCAR marker to track canola resistance against blackleg caused by Leptosphaeria maculans pathogenicity group 3. Plant Dis 92:903–908

    Article  CAS  Google Scholar 

  • Ellis PR, Farrell JA (1995) Resistance to cabbage aphid (Brevicoryne brassicae) in six Brassica accessions in New Zealand. N Z J Crop Hortic Sci 23:25–29

    Article  Google Scholar 

  • Ellis PR, Kiff NB, Pink DAC, Jukes PL, Lynn J, Tatchell GM (2000) Variation in resistance to the cabbage aphid (Brevicoryne brassicae) between and within wild and cultivated brassica species. Genet Resour Crop Evol 47:395–401

    Article  Google Scholar 

  • Fathi SAA, Bozorg-Amirkalaee M, Sarfaraz RM (2011) Preference and performance of Plutella xylostella (L.) (Lepidoptera: Plutellidae) on canola cultivars. J Pest Sci 84:41–47

    Article  Google Scholar 

  • Foissac X, Nguyen TL, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leaf hopper (Nephotettix virescens) and brown plant hopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583

    Article  PubMed  CAS  Google Scholar 

  • Gerdemann-Knorck M, Nielen S, Tzscheetzsch C, Iglisch J, Schieder O (1995) Transfer of disease resistance within the genus Brassica through asymmetric somatic hybridization. Euphytica 85:247–253

    Article  Google Scholar 

  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14:643–646

    Article  PubMed  CAS  Google Scholar 

  • Hagimori M, Nagaoka M, Kato N, Yoshikawa H (1992) Production and characterization of somatic hybrids between the Japanese radish and cauliflower. Theor Appl Genet 83:655–662

    Google Scholar 

  • Hasan F, Ansari MS (2011) Effects of different brassicaceous host plants on the fitness of Pieris brassicae. Crop Prot 30:854–862

    Article  Google Scholar 

  • Hu Q, Li YC, Mei DS (2009) Introgression of genes from wild crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 261–283

    Google Scholar 

  • Huang X, Renwick JAA (1994) Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea. J Chem Ecol 20:1025–1037

    Article  CAS  Google Scholar 

  • Kanrar S, Venkateswari J, Kirti PB, Chopra VL (2002) Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20:976–981

    Article  CAS  Google Scholar 

  • Khan MR, Rashid H, Ansar M, Chaudry Z (2003) High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in canola (Brassica napus). Plant Cell Tiss Org Cult 75:223–231

    Article  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Atri C, Sangha MK, Banga SS (2011) Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica 179:461–470

    Article  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5:1–17

    Article  Google Scholar 

  • Liu JH, Dixelius C, Eriksson I, Glimelius K (1995) Brassica napus (+) B. tournefortii, a somatic hybrid containing traits of agronomic importance for rapeseed breeding. Plant Sci 109:75–86

    Article  CAS  Google Scholar 

  • Liu HB, Guo X, Naeem MS, Liu D, Xu L, Zhang WF, Tang GX, Zhou WJ (2011a) Transgenic Brassica napus L. lines carrying a two gene construct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. Plant Cell Tiss Org Cult 106:143–151

    Article  Google Scholar 

  • Liu HB, Naeem MS, Liu D, Zhu YN, Guo X, Cui P, Zhou WJ (2011b) Analyses of inheritance patterns and consistent expression of sporamin and chitinase PjChi-1 genes in Brassica napus. Plant Breed 130:345–351

    Article  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1988a) Antifungal hydrolases in pea tissue: purification and characterization of 2 chitinases and 2 β-1, 3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87:325–333

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988b) Antifungal hydrolases in pea tissue: inhibition of fungal growth by combinations of chitinase and β-1, 3-glucanases. Plant Physiol 88:936–942

    Article  PubMed  CAS  Google Scholar 

  • Melander M, Kamnert I, Happstadius I, Liljeroth E, Bryngelsson T (2006) Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1,3-glucanase genes in a double gene construct. Plant Cell Rep 25:942–952

    Article  PubMed  CAS  Google Scholar 

  • Miles CI, del Campo ML, Renwick JAA (2005) Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J Comp Physiol A 191:147–155

    Article  Google Scholar 

  • Mohan M, Gujar GT (2003) Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Prot 22:495–504

    Article  CAS  Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242

    Article  CAS  Google Scholar 

  • Momoh EJJ, Zhou WJ, Kristiansson B (2002) Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res 42:446–455

    Article  Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    Article  PubMed  CAS  Google Scholar 

  • Mora AA, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing a Thrichoderma harzianum endochitinase gene. Mol Breed 8:1–9

    Article  CAS  Google Scholar 

  • Mosolov VV, Valueva TA (2008) Proteinase inhibitors in plant biotechnology: a review. Appl Biochem Microbiol 44:233–240

    Article  CAS  Google Scholar 

  • Panda N, Khush GS (1995) Host plant resistance to insects. CAB Int, Wallingford

    Google Scholar 

  • Pidskalny RS, Rimmer SR (1985) Virulence of Albugo candida from turnip rape (Brassica campestris) and mustard (Brassica juncea) on various crucifers. Can J Plant Pathol 7:283–286

    Article  Google Scholar 

  • Plieske J, Struss D, Robbelen G (1998) Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theor Appl Genet 97:929–936

    Article  CAS  Google Scholar 

  • Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the plant hoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99:71–77

    Article  CAS  Google Scholar 

  • Purwantara A, Salisbury PA, Burton WA, Howlett BJ (1998) Reaction of Brassica juncea (Indian mustard) lines to Australian isolates of Leptosphaeria maculans under glasshouse and field conditions. Eur J Plant Pathol 104:895–902

    Article  Google Scholar 

  • Rahbe Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155

    Article  CAS  Google Scholar 

  • Rahbe Y, Deraison C, Bonade-Bottino M, Girara C, Nardon C, Jouanin L (2003) Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Sci 164:441–450

    Article  CAS  Google Scholar 

  • Rai B, Gupta SK, Pratap A (2007) Breeding methods. In: Gupta SK (ed) Advances in botanical research-rapeseed breeding, vol 45. Academic/Elsevier, San Diego, pp 21–48

    Chapter  Google Scholar 

  • Raybold AF, Moyes CL (2001) The ecological genetics of aliphatic glucosinolates. Heredity 87:383–391

    Article  Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: iures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Roush RT, Shelton AM (1997) Assessing the odds: the emergence of resistance to bt transgenic plants. Nat Biotechnol 15:816–817

    Article  PubMed  CAS  Google Scholar 

  • Ryschka U, Schumann G, Klocke E, Scholze P, Neumann M (1996) Somatic hybridization in brassiceae. Acta Hortic 407:201–208

    Google Scholar 

  • Saal B, Brun H, Glais I, Struss D (2004) Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breed 123:505–511

    Article  CAS  Google Scholar 

  • Saal B, Struss D (2005) RGA- and RAPD-derived SCAR for a Brassica B-Genome introgression conferring resistance to blackleg in oilseed rape. Theor Appl Genet 101:281–290

    Article  Google Scholar 

  • Sadasivam S, Thayumanavan B (2003) Molecular host plant resistance to pests. Marcel Dekker, New York, pp 61–83

    Google Scholar 

  • Sakhno LA, Gocheva EA, Komarnitskii KI, Kuchuk NV (2008) Stable expression of the promoterless bar gene in transformed rapeseed plants. Cytol Genet 42:16–22

    Google Scholar 

  • Saxena AK, Bhadoria SS, Gadewadikar PN, Barteria AM, Tomar SS, Dixit SC (1995) Yield losses in some improved varieties of mustard by aphid, Lipaphis erysimi Kalt. Agric Sci Dig 15:235–237

    Google Scholar 

  • Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. PNAS 103:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Singh CP, Sachan GC (1994) Assessment of yield losses in yellow sarson due to mustard aphid, Lipaphis erysimi (Kalt). J Oilseeds Res 11:179–184

    Google Scholar 

  • Singh R, Sharma SK (2007) Evaluation, maintenance and conservation of germplasm. In: Gupta SK (ed) Advances in botanical research-rapeseed breeding, vol 45. Academic, London, pp 465–481

    Chapter  Google Scholar 

  • Sjodin C, Glimelius K (1989) Transfer of resistance against Phoma lingam to Brassica napus by asymmetric somatic hybridization combined with toxin selection. Theor Appl Genet 78:513–520

    Article  Google Scholar 

  • Snowdon RJ, Winter H, Diestel A, Sacristan MD (2000) Development and characterization of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor Appl Genet 101:1008–1014

    Article  Google Scholar 

  • Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tiss Org Cult 83:83–96

    Article  CAS  Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Liang A (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24:549–555

    Article  PubMed  CAS  Google Scholar 

  • Williams PH, Fitt BDL (1999) Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathol 48:161–175

    Article  Google Scholar 

  • Xiang Y, Wong WKR, Ma MC, Wong RSC (2000) Agrobacterium-mediated transformation of Brassica campestris ssp. Parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep 19:252–256

    Article  Google Scholar 

  • Yi D, Cui L, Liu Y, Zhang M, Zhang Y, Fang Z, Yang L (2011) Transformation of cabbage (Brassica oleracea L. var. capitata) with Bt cry1Ba3 gene for control of diamondback moth. Agric Sci China 10:1693–1700

    Article  CAS  Google Scholar 

  • Zhang J, Liu F, Yao L, Luo C, Zhao Q, Huang Y (2011) Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) with the pinII gene and bioassay for diamondback moth resistance. Plant Biotechnol Rep 5:217–224

    Article  CAS  Google Scholar 

  • Zhou WJ (2001) Oilseed rape. In: Zhang GP, Zhou WJ (eds) Crop production. Zhejiang University Press, Hangzhou, pp 153–178

    Google Scholar 

  • Zhu JS, Struss D, Robbelen G (1993) Studies on resistance to Phoma lingam in Brassies napus-Brassica nigra addition lines. Plant Breed 111:192–197

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (2011AA10A206), the Science and Technology Department of Zhejiang Province (2012C12902-1, 2011R50026-5), Scientific Research Foundation of Zhejiang A&F University (2013FR022), China Postdoctoral Science Foundation (20110491819, 2012T50555), National Natural Science Foundation of China (31000678, 31071698, 31170405), and National Key Science and Technology Supporting Program of China (2010BAD01B01, 2010BAD01B04). Weijun Zhou (the corresponding author) is grateful to the 985-Institute of Agrobiology and Environmental Sciences of Zhejiang University for providing convenience in using the experimental equipments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Zhou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, H. et al. (2013). Genetic Modifications for Pest Resistance. In: Gupta, S. (eds) Biotechnology of Crucifers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7795-2_12

Download citation

Publish with us

Policies and ethics