Endothelin pp 125-136 | Cite as

Interaction between Endothelin and Endothelium-Derived Relaxing Factor(s)

  • Thomas F. Lüscher
  • Chantal Boulanger
  • Zhihong Yang
  • Yasuaki Dohi
Part of the Clinical Physiology Series book series (CLINPHY)

Abstract

In the last decade, a number of vasoactive substances produced and released by endothelial cells have been characterized.1 Indeed, the cells are not only a source of endothelin, but also of other contracting factors such as angiotensin II, cyclooxygenase-dependent contracting factors (i.e., thromboxane A2, prostaglandin H2, and superoxide anions), and a yet unidentified contracting factor released during hypoxia (EDCF1). In addition, the endothelium produces relaxing factors such as endothelium-derived nitric oxide (formerly called “endothelium-derived relaxing factor”), prostacyclin, and an endothelium-derived hyperpolarizing factor of unknown biochemical nature. With the increasing complexity of endothelium-dependent vascular regulatory mechanisms, interactions between vasoactive substances produced by the cells have become more important. This chapter focuses on the interactions of endothelin-1, endothelium-derived nitric oxide, and prostacyclin at the levels of the endothelium and the vascular smooth muscle cell.

Keywords

Superoxide Arginine Luminal Acetylcholine Indomethacin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luscher, T. F., and P. M. Vanhoutte. The endothelium: modulator of cardiovascular function. Boca Raton, FL: Crc Press, 1990.Google Scholar
  2. 2.
    Dohi, Y., and T. F. Luscher. Endothelin-1 in hypertensive mesenteric resistance arteries. Different intra-and extraluminal dysfunction. Hypertension 1991 (in press).Google Scholar
  3. 3.
    Rae, G. A., M. Trybulec, G. DE Nucci, and J. R. Vane. Endothelin-1 releases eicosanoids from rabbit isolated kidney and spleen. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): 89–92, 1989.CrossRefGoogle Scholar
  4. 4.
    DE Nucci, G., F. Thomas, P. Dorleansjuste, E. Antunes, C. Walder, T. D. Warner, and J. R. Vane. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc. Natl. Acad. Sci. Usa 85: 9797–9800, 1989.CrossRefGoogle Scholar
  5. 5.
    Warner, T. F., J. A. Mitchell, G. DE Nucci, and J. R. Vane. Endothelin-1 and endothelin3 release Edrf from isolated perfused arterial vessels of the rat and rabbit. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): 85–88, 1989.CrossRefGoogle Scholar
  6. 6.
    Watanabe, K., H. Miyazaki, M. Kondoh, Y. Masuda, S. Kimura, M. Yanagisawa, T. Masaki and K. Murakami. Two distinct types of endothelin-1 receptors are present on chick cardiac membranes. Biochem. Biophys. Res. Commun. 161: 1252–1259, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Maggi, C. A., S. Giuliani, R. Patacchini, P. Rovero, A. Giachetti, and A. Meli. The activity of peptides of the endothelin-1 family in various mammalian smooth muscle preparations. Eur. J. Pharmacol. 174: 23–31, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Spokes, R. A., M. A. Ghatei, and S. R. Bloom. Studies with endothelin-3 and endothelin-1 on rat blood pressure and isolated tissues: evidence for multiple endothelin-1 receptor subtypes. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): 191–192, 1989.CrossRefGoogle Scholar
  9. 9.
    Boulanger, C., V. B. Schini, S. Moncada, and P. M. Vanhoutte. Stimulation of cyclic Gmp production in cultured porcine endothelial cells by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide. Br. J. Pharmacol. 1990 (in press).Google Scholar
  10. 10.
    Evans, H. G., J. A. Smith, and M. J. Lewis. Release of endothelium-derived relaxing factor is inhibited by 8-bromo-cyclic guanosine monophosphate. J. Cardiovasc. Pharmacol. 12; 672–677, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Boulanger, C., and T. F. Luscher. Endothelin is released from the porcine aorta• inhibition by endothelium-derived nitric oxide. J. Clin. Invest. 85: 587–590, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Luscher T. F., D. Diederich, R. Siebenmann, K. Lehmann, P. Stulz, L. Von Segesser, Z. Yang, M. Turina, E. Gradel, E. Weber, and F. R. BÜHler. Difference between endothelium-dependent relaxations in arterial and in venous coronary bypass grafts. N. Engl. J. Med. 319: 462–467, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, Z., T, F. LÜScher. Unpublished observations, 1990.Google Scholar
  14. 14.
    Schini, V. B., H. Hendrickson, D. Heublein, J. Burnett, JR., and P. Vanhoutte. Thrombin enhances the release of endothelin from cultured porcine aortic endothelial cells. Eur. J. Pharmacol. 165: 333–334, 1989.PubMedCrossRefGoogle Scholar
  15. 15.
    Rubanyi, G. M., and P. M. Vanhoutte. Ouabain inhibits endothelium-dependent relaxations to arachidonic acid in canine coronary arteries. J. Pharmacol. Exp. Ther. 235: 81–86, 1985.PubMedGoogle Scholar
  16. 16.
    Gryglewski, R. J., R. M. J. Palmer, and S. Moncada. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456, 1986.PubMedCrossRefGoogle Scholar
  17. 17.
    Boulanger, C., and T. F. Luscher. Hirudin nitros inhibit the thrombin-induced release of endothelin from the intact porcine aorta. Circ. Res. 68: 91, 1991.CrossRefGoogle Scholar
  18. 18.
    Boulanger, C., and T. F. LÜScher. Unpublished observations, 1990.Google Scholar
  19. 19.
    Cornwell, T. L., and T. M. Lincoln. Regulation of intracellular Ca“ levels in cultured vascular smooth muscle cells. J. Biochem. Chem. 264: 1146–1155, 1989.Google Scholar
  20. 20.
    Luscher, T. F., Z. Yang, M. Tschudi, L. Von Segesser, P. Stulz, C. Boulanger, Siebenmann, M. Turina, and F. R. BÜHler. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins. Circ. Res. 66: 1088–1094, 1990.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang, Z., F. R. Buhler, D. Diederich, and T. F. LÜScher. Different effects of endothelium on cyclic Amp- and cyclic Gmp-mediated vascular relaxation in human arteries and veins: comparison with norepinephrine. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): 129–131, 1989.CrossRefGoogle Scholar
  22. 22.
    Miller, V. M., K. Komori, J. C. Burnett, and P. M. Vanhoutte. Differential sensitivity to endothelin in canine arteries and veins. Am. J. Physiol. 257: 1113–1126, 1989.Google Scholar
  23. 23.
    Collins, P., A. H. Henderson, D. Lang, and M. J. Lewis. Endothelium-derived relaxing factor and nitroprusside compared in noradrenaline-and K -contracted rabbit and rat aortae. J. Physiol. (Lond.) 400: 395–404, 1988.Google Scholar
  24. 24.
    Dom, Y., and T. F. Luscher. Aging differentially affects direct and indirect actions of endothelin-1 in perfused rat mesenteric resistance arteries. Br. J. Pharmacol. 100: 889–893, 1990.CrossRefGoogle Scholar
  25. 25.
    Scher, T. F., D. Diederich, Z. Yang, and F. R. BÜHler. Endothelin overrides endothelium-derived relaxing factor in hypertensive resistance arteries. Kidney Int. 35 (1): 331, 1989.Google Scholar
  26. 26.
    Dohi, Y., M. Thiel, F. R. Buhler, and T. F. Luscher. Activation of endothelial L-arginine pathway in resistance arteries: effect of age and hypertension. Hypertension 15: 170–179, 1990.CrossRefGoogle Scholar
  27. 27.
    Kiowski, W., L. Linder, T. F. LÜScher and F. R. BÜHler. Endothelin-1 induced vasoconstriction in man: reversal by a calcium channel blockade, but not by nitrovasodilators or endothelium-derived relaxing factor. Circulation (submitted).Google Scholar
  28. 28.
    Scher, T. F. Endothelial vasoactive factors and regulation of vascular tone in human blood vessels. Lung (Suppl.): 27–34, 1990.Google Scholar

Copyright information

© American Physiological Society 1992

Authors and Affiliations

  • Thomas F. Lüscher
  • Chantal Boulanger
  • Zhihong Yang
  • Yasuaki Dohi

There are no affiliations available

Personalised recommendations