Skip to main content

Cellular Actions of Endothelin in Vascular Smooth Muscle

  • Chapter
Endothelin

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

Vascular endothelium is an essential component of the blood vessel wall, important in the maintenance of normal vascular structure and function. By virtue of their location at the blood—tissue interface in vivo, endothelial cells are constantly exposed to a wide diversity of physical and chemical stimuli. It has long been recognized that the vascular endothelium plays a pivotal role in the regulation of blood vessel tone by producing vasoactive substances that act on underlying smooth muscle cells.33 Endothelin is the most recent addition to the list of endothelium-derived vasoactive molecules.92 Consistent with the initial observation that endothelin is by far one of the most powerful vasoconstrictors, it has now been widely documented that endothelia is a potent stimulator of both vascular and nonvascular smooth muscle contraction.50,77,93 It is now recognized that the human endothelin “family” contains three distinct isoforms (endothelin-1, endothelin-2, and endothelin-3) that are products of three separate genes.93

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalkjaer, C., and E. J. Cragoe, JR. Intracellular pH regulation in resting and contracting segments of rat mesenteric Resistance vessels. J. Physiol. (Lond.) 402: 391–410, 1988.

    CAS  Google Scholar 

  2. Ambar, I., Y. Kloog, I. Schvartz, E. Hazum, and M. Soxolovsky. Competitive interaction between endothelin and sarafotoxin: binding and phosphoinositides hydrolysis in rat atria and brain. Biochem. Biophys. Res. Commun. 158: 195–201, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Araki, S., Y. Kawahara, K. Kariya, M. Suanako, H. Fukusaki, and Y. Takai. Stimulation of phospholipase C—mediated hydrolysis of phosphoinositides by endothelin in cultured rabbit aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 159: 1072–1079, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Auget, M., S. Delaflotte, P.-E. Chabrier, and P. Branquet. Comparative effects of endothelin and phorbol 12,13-dibutyrate in rat aorta. Life Sci. 45: 2051–2059, 1989.

    Article  Google Scholar 

  5. Auget, M., S. Delaflotte, P-E. Chabrier, E. Pirotzky, C. Clostre, and P. Braquet. Endothelin and Ca’ agonist bay K8644: different vasoconstrictive properties. Biochem. Biophys. Res. Commun. 156: 186–192, 1988.

    Article  Google Scholar 

  6. Berk, B. C., T. A. Brock, M. A. Gimbrone, JR., and R. W. Alexander. Early agonistmediated ionic events in cultured vascular smooth muscle cells: calcium mobilization is associated with intracellular acidification. J. Biol. Chem. 262: 5065–5072, 1987.

    PubMed  CAS  Google Scholar 

  7. Berridge, M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159–193, 1987.

    Article  CAS  Google Scholar 

  8. Berridge, M. J., and R. F. Irvine. Inositol phosphates and cell signalling. Nature 341: 197–205, 1989.

    Google Scholar 

  9. Bialecki, R. A., N. J. Izzo, JR., and W. S. Colucci. Endothelin-1 increases intracellular calcium mobilization but not calcium uptake in rabbit vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 164: 474–479, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Bobik, A., A. Grooms, J. A. Millar, A. Mitchell, and S. Grinpukel. Growth factor activity of endothelin on vascular smooth muscle. Am. J. Physiol. 258 (Cell Physiol. 27 ): C408 - C415, 1990.

    Google Scholar 

  11. Brock, T. A., R. W. Alexander, L. S. Ekstein, W. J. Atkinson, and M. A. Gimbrone, JR. Angiotensin increases cytosolic free calcium in cultured vascular smooth muscle cells. Hypertension 7 (Suppl. 1): I105 - I109, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Chatterjee, M., and M. Tejada. Phorbol ester—induced contraction in chemically skinned vascular smooth muscle. Am. J. Physiol. 251 (Cell Physiol. 20): C356 - C361, 1986.

    PubMed  CAS  Google Scholar 

  13. Cilea, J., S. Moreland, and R. S. Moreland. Maintenance of endothelin contractions of swine carotid artery requires extracellular calcium and protein kinase C activation, abstracted. Faseb J. 4: A332, 1990.

    Google Scholar 

  14. Clozel, M., W. Fischli, and C. Guilly. Specific binding of endothelin on human vascular smooth muscle cells in culture. J. Clin. Invest. 83: 1758–1761, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Danthuluri, N. R., B. C. Berk, T. A. Brock, E. J. Cragoe, JR., R. C. Deth. Protein kinase C—mediated intracellular alkalinization in rat and rabbit aortic smooth muscle cells. Eur. J. Pharmacol. 141: 503–506, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Danthuluri, N. R., and T. A. Brock. Endothelin receptor—coupling mechanisms in vascular smooth muscle: a role for protein kinase C. J. Pharmacol. Exp. Ther. 254: 393–399, 1990.

    PubMed  CAS  Google Scholar 

  17. Danthuluri, N. R., and R. C. Deth. Phorbol ester—induced contraction of arterial smooth muscle and inhibition of a-adrenergic response. Biochem. Biophys. Res. Commun. 125: 1103–1109, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Danthuluri, N. R., and R. C. Deth. Acute desensitization to angiotensin II: evidence for a requirement of agonist-induced diacylglycerol production during tonic contraction of rat aorta. Eur. J. Pharmacol. 126: 135–139, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Danthuluri, N. R., and R. C. Deth. Effects of intracellular alkalinization on resting and agonist-induced vascular tone. Am. J. Physiol. 256(Heart Circ. Physiol. 25): H867–H875, 1989.

    Google Scholar 

  20. Deth, R., and C. Van Breemen. Relative contributions of Ca“ influx and cellular Ca” release during drug-induced activation of the rabbit aorta. Pflugers Arch. 348: 13–22, 1976.

    Article  Google Scholar 

  21. Dorleansjuste, P., G. DE Nucci, and J. R. Vane. Endothelin-1 contracts isolated vessels independently of dihydropyridine-sensitive Ca“ channel activation. Eur. J. Pharmacol. 165: 289–295, 1989.

    Article  CAS  Google Scholar 

  22. Exton, J. J. Signaling through phosphatidylcholine breakdown. J. Biol. Chem. 265: 1–4, 1990.

    PubMed  CAS  Google Scholar 

  23. Fish, D. R., G. Sperti, W. S. Colucci, and D. E. Clapham. Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ. Res. 62: 1049–1054, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Fong, H. K. W., K. K. Yoshimoto, P. Eversole-Cire, and M. I. Simon. Identification of a Gtp-binding protein that lacks an apparent Adp-ribosylation site for pertussis toxin. Proc. Natl. Acad. Sci. Usa 85: 3066–3070, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Forder, J., A. Scriabine, and H. Rasmussen. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J. Pharmacol. Exp. Ther. 235: 267–273, 1985.

    PubMed  CAS  Google Scholar 

  26. Ganz, M. B., G. Boyarsky, R. B. Sterzel, and W. F. Boron. Arginine vasopressin enhances pH, regulation in the presence of Hco3- by stimulating three acid—base transport systems. Nature (Lond.) 337: 648–651, 1989.

    Article  CAS  Google Scholar 

  27. Gilman, A. G. G proteins: transducers of receptor generated signals. Annu. Rev. Biochem. 56: 615–49, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Goto, K., Y. Kasuya, N. Matsuki, Y. Takuwa, H. Kurihara, T. Ishikawa, S. Kimura, M. Yanagisawa, and T. Masaki. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca“ channel in vascular smooth muscle. Proc. Natl. Acad. Sci. Usa 86: 3915–3918, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Griendling, K. K., and R. W. Alexander. Angiotensin, other pressors and the transduction of vascular smooth muscle contraction. In: Hypertension: Pathophysiology, Diagnosis and Management, edited by J. H. Laragh and B. M. Brenner. New York: Raven, 1990, p. 583–600.

    Google Scholar 

  30. Griendling, K. K., B. C. Berk, and R. W. Alexander. Evidence that Na ‘II’ exchange regulates angiotensin II—stimulated diacylglycerol accumulation in vascular smooth muscle cells. J. Biol. Chem. 263: 10620–10624, 1988.

    PubMed  CAS  Google Scholar 

  31. Griendling, K. K., S. E. Rittenhouse, T. A. Brock, L. S. Ekstein, M. A. Gimbrone, JR., and R. W. Alexander. Sustained diaclyglycerol formation from inositol phospholipids in angiotensin II—stimulated vascular smooth muscle cells. J. Biol. Chem. 261: 5901–5906, 1986.

    PubMed  CAS  Google Scholar 

  32. Griendling, K. K., T. Tsuda, and R. W. Alexander. Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J. Biol. Chem. 264: 8237–8240, 1989.

    PubMed  CAS  Google Scholar 

  33. Grinstein, S., and A. Rothstein. Mechanism of regulation of the Na’/H’ exchanger. J. Membr. Biol. 90: 1–12, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Gryglewski, R. J., R. M. Botting, and J. R. Vane. Mediators produced by the endothelial cell. Hypertension 12: 530–548, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Hatori, N., B. P. Fine, A. Nakamura, E. J. Cragoe, JR., and A. Aviv. Angiotensin II effect on cytosolic pH in cultured rat vascular smooth muscle cells. J. Biol. Chem. 262: 5073–5078, 1987.

    PubMed  CAS  Google Scholar 

  36. Hill, T. D., N. M. Dean, and A. L. Boynton. Inositol 1,3,4,5-tetrakisphosphate induces Ca“ sequestration in rat liver cells. Nature 242: 1176–1178, 1988.

    CAS  Google Scholar 

  37. Hirata, Y., H. Yoshimi, T. Emori, M. Shiciri, F. Marumo, T. X. Watanabe, S. Kumagaye, K. Nakajima, T. Kimura, and S. Sakakibara. Receptor binding activity and cytosolic free calcium response by synthetic endothelin analogs in cultured rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 160: 228–234, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Hirata, Y., H. Yoshimi, S. Takata, T. X. Watanabe, S. Kumagai, K. Nakajima, and S. Sakakibra. Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 154: 868–875, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Ishikawa, T., M. Yanagisawa, S. Kimura, K, Goto, and T. Masaki, Positive inotropic action of novel vasoconstrictor peptide endothelin on guinea pig atria. Am. J. Physiol. 255 (Heart Circ. Physiol. 24): H970 - H973, 1988.

    PubMed  CAS  Google Scholar 

  40. Itoh, H., and K. Lederis. Contraction of rat thoracic aorta strips induced by phobol 12myristate 13-acetate. Am. J. Physiol. 252 (Cell Physiol. 21 ): C244 - C247, 1987.

    Google Scholar 

  41. Jiang, M. J., and K. C. Morgan. Intracellular calcium levels in phorbol ester—induced contractions of vascular smooth muscle. Am. J. Physiol. 253 H1365 - H1371, 1987.

    PubMed  CAS  Google Scholar 

  42. Kaczmarek, L. K. The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci. 10: 30–34, 1987.

    Article  CAS  Google Scholar 

  43. Kai, H., H. Kanaide, and M. Nakamura. Endothelin-sensitive intracellular Ca“ store overlaps with a caffeine-sensitive one in rat aortic smooth muscle cells in primary culture. Biochem. Biophys. Res. Commun. 158: 235–243, 1989.

    Article  PubMed  CAS  Google Scholar 

  44. Kaysuya, Y., T. Ishikawa, M. Yanagisawa, S. Kimura, K. Goto, and T. Masaki. Mechanism of contraction to endothelin in isolated porcine coronary artery. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1828 - H1835, 1989.

    Google Scholar 

  45. Kaysuya, Y., T. Takuwa, M. Yaagisawa, S. Kimura, K. Goto, and T. Masaki. Endothelin-1 induces vasconstriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem. Biophys. Res. Cornmun. 161: 1049–1055, 1989.

    Article  Google Scholar 

  46. Khalil, R. A., N. J. Lodge, K. Saida, C. H. Gelband, and C. Van Breemen. Calcium mobilization in vascular smooth muscle and its relevance to the etiology of hypertension. In: Hypertension: Pathophysiology, Diagnosis and Management, edited by J. H. Laragh and B. M. Brenner. New York: Raven, 1990, p. 547–564.

    Google Scholar 

  47. Kim, S., S. Morimoto, E. KoH, Y. Miyashita, and T. Ogihara. Comparison of effects of a potassium channel opener Brl34915, a specific potassium ionophore valinomycin and calcium channel blockers on endothelin-induced vascular contraction. Biochem. Biophys. Res. Commun. 164: 1003–1008, 1989.

    Article  PubMed  CAS  Google Scholar 

  48. Kodama, M., H. Kanaide, S. Abe, K. Hirano, H. Kai, and M. Nakamura. Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem. Biophys. Res. Commun. 160: 1302–1308, 1989.

    Article  PubMed  CAS  Google Scholar 

  49. Komura, I., H. Kurihara, T. Sugiyama, F. Takaku, and Y. Yazaki. Endothelin stimulates cfos and c-myc expression and proliferation of vascular smooth muscle cells. Febs Lett. 238: 249–252, 1988.

    Article  Google Scholar 

  50. Lee, T.-S., T. Chao, K.-Q. Hu, and G. L. King. Endothelin stimulates a sustained 1,2-diacylglycerol increase and protein kinase C activation in bovine aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 162: 381–386, 1989.

    Article  PubMed  CAS  Google Scholar 

  51. LE Monnier DE Gouville, A.-C., H. L. Lippton, I. Cavero, W. R. Summer, and A. L. Hyman. Endothelin—a new family of endothelium-derived peptides with widespread biological properties. Life Sci. 45: 1499, 15–13, 1989.

    Google Scholar 

  52. Marsden, P. A., N. R. Danthuluri, B. M. Brenner, B. J. Ballermann, and T. A. Brock. Endothelin action on vascular smooth muscle involves inositol trisphosphate and calcium mobilization. Biochem. Biophys. Res. Commun. 158: 86–93, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Matsuoka, M., H. Itoh, T. Kozasa, and Y. Kaziro. Sequence analysis of cDna and genomic Dna for a putative pertussis toxin–insensitive guanine nucleotide-binding regulatory protein a subunit. Proc. Natl. Acad. Sci. Usa 85: 5384–5388, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Miasiro, N., H. Yamamoto, H. Kanaide, and M. Nakamura. Does endothelin mobilize calcium from intracellular store sites in rat aortic vascular smooth muscle cells in primary culture? Biochem. Biophys. Res. Commun. 156: 312–317, 1988.

    Article  PubMed  CAS  Google Scholar 

  55. Mitsuhasi, T., R. C. Morris, JR., and H. E. Ives. Endothelin-induced increases in vascular smooth muscle Ca“ do not depend on dihydropyridine-sensitive Ca” channels. J. Clin. Invest. 84: 635–639, 1989.

    Article  Google Scholar 

  56. Morgan, J. P., and K. G. Morgan. Vascular smooth muscle, the first recorded Ca“ transient. Pflugers Arch. 395: 75–77, 1983.

    Article  Google Scholar 

  57. Muldoon, L. L., K. D. Rodland, M. L. Forsythe, and B. E. Magun. Stimulation of phosphatidylinositol hydrolysis, diacylglycerol release, and gene expression in response to endothelin, a potent new agonist for fibroblasts and smooth muscle cells. J. Biol. Chem. 264: 8529–8536, 1989.

    PubMed  CAS  Google Scholar 

  58. Neer, E. J., and D. E. Clapham. Structure and function of G-protein ß subunit. In: G proteins, edited by R. Iyengar and L. Birnbaumer. San Diego, CA: Academic, 1990, p. 41–61.

    Chapter  Google Scholar 

  59. Nishikawa, M., J. R. Sellers, R. S. Adelstein, and H. Hidaka. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy mermyosin by myosin light chain kinase. J. Biol. Chem. 259: 8808–8814, 1984.

    PubMed  CAS  Google Scholar 

  60. Nishikawa, M., S. Shirakawa, and R. S. Adelstein. Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C. J. Biol. Chem. 260: 8978–8983, 1985.

    PubMed  CAS  Google Scholar 

  61. Nishizuka, Y. Studies and perspectives of the protein kinase C family for cellular regulation. Cancer 63: 1892–1903, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Ohlstein, E. H., S. Horohonich, and D. W. P. Hay. Cellular mechanisms of endothelin in rabbit aorta. J. Pharmacol. Exp. Ther. 250: 548–555, 1989.

    PubMed  CAS  Google Scholar 

  63. Owen, N. E. Effect of catecholamines on Na/H exchange in vascular smooth muscle cells. J. Cell Biol. 103: 2053–2060, 1986.

    Article  PubMed  CAS  Google Scholar 

  64. Pang, D. C., A. Johns, K. Patterson, L. H. P. Bothello, and G. M. Rubanyi. Endothelin-1 stimulates phosphatidylinositol hydrolysis and calcium uptake in isolated canine coronary arteries. J. Cardiovasc. Sci. 13 (Suppl. 5): S75–S79, 1989.

    CAS  Google Scholar 

  65. Paris, S., and J. Pouyssegur. Growth factors activate the Na-/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H*. J. Biol. Chem. 259: 10989–10994, 1984.

    PubMed  CAS  Google Scholar 

  66. Rapoport, R. M., K. A. Stauderman, and R. F. Highsmith. Effects of Edcf and endothelin on phosphatidylinositol hydrolysis and contraction in rat aorta. Am. J. Physiol. 258 (Cell Physiol. 27): C122–C131, 1990.

    PubMed  CAS  Google Scholar 

  67. Rasmussen, H. The calcium messenger system. N. Engl. J. Med. 314: 1164–1170, 1986.

    Article  PubMed  CAS  Google Scholar 

  68. Rasmussen, H., Y. Takuwa, and S. Park. Protein kinase C in the regulation of smooth muscle contraction. Faseb J. 1: 177–185, 1987.

    Google Scholar 

  69. Rembold, C. M., and R. A. Murphy. [Ca2 1-dependent myosin phosphorylation in phorbol diester stimulated smooth muscle contraction. Am. J. Physiol. 255(Cell Physiol. 24): C719–C723, 1988.

    Google Scholar 

  70. Resinx, T. J., T. Scottburden, and F. R. Buhler. Endothelin stimulates phospholipase C in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 157: 1360–1368, 1988.

    Article  Google Scholar 

  71. Resink, T. J., T. Scottburden, and F. R. Buhler. Activation of phospholipase AZ by endothelin in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 158: 279–286, 1989.

    Article  PubMed  CAS  Google Scholar 

  72. Resink, T. J., T. Scott-Burden, E. Weber, and F. R. Buhler. Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 166: 1213–1219, 1990.

    Article  PubMed  CAS  Google Scholar 

  73. Reynolds, E. E., J. M. Brum, E. J. Cragoe, JR., and C. M. Ferrari°. Effect of Na’/H exchange inhibitors on agonist-induced contraction of rat aorta. J. Pharmacol. Exp. Ther. 247: 1146–1151, 1988.

    PubMed  CAS  Google Scholar 

  74. Reynolds, E. E., and G. R. Dubyak. Agonist-induced calcium transients in cultured smooth muscle cells: measurements with Fura-2 loaded monolayers. Biochem. Biophys. Res. Commun. 136: 927–934, 1986.

    Article  PubMed  CAS  Google Scholar 

  75. Reynolds, E. E., L. S. Mok, and S. Kurokawa. Phorbol ester dissociates endothelin-stimulated phosphoinositide hydrolysis and arachidonic acid release in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 160: 868–873, 1989.

    Article  PubMed  CAS  Google Scholar 

  76. Rhee, S. G., P.-G. Simi, S.-H. Ryu, and S. Y. Lee. Studies of inositol phospholipid—specific phospholiase C. Science 244: 546–550, 1089.

    Article  Google Scholar 

  77. Roubert, P., V. Gillard, P. Plas, J.-M. Guillon, P.-E. Chabrier, and P. Braquet. Angiotensin II and phorbol esters potently down-regulate endothelin (endothelin-1) binding sites in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 164: 809–815, 1989.

    Article  PubMed  CAS  Google Scholar 

  78. Sato, K., H. Ozaki, and H. Karami. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura-2. J. Pharmacol. Exp. Ther. 246: 294–300, 1988.

    PubMed  CAS  Google Scholar 

  79. Secrest, R. J., and M. L. Cohen. Endothelin: differential effects in vascular and nonvascular smooth muscle. Life Sci. 45: 1365–1372, 1989.

    Article  PubMed  CAS  Google Scholar 

  80. Silberberg, S. D., T. C. Poder, and A. E. Lacerda. Endothelin increases single channel calcium currents in coronary arterial smooth muscle cells. Febs Lett. 247: 68–72, 1989.

    Article  PubMed  CAS  Google Scholar 

  81. Socorro, L., R. W. Alexander, and K. K. Griendling. Cholera toxin modulation of angiotensin II—stimulated inositol phophate production in cultured vascular smooth muscle cells. Biochem. J. 265: 799–807.

    Google Scholar 

  82. Somlyo, A. P., and B. Himpens. Cell calcium and its regulation in smooth muscle. Faseb J. 3: 2266–2276, 1989.

    PubMed  CAS  Google Scholar 

  83. Somlyo, A. V., M. Bond, A. P. Somlyo, and A. Scarpa. Inositol trisphosphate—induced calcium release and contraction in vascular smooth muscle. Proc. Natl. Acad. Sci. Usa 82: 5231–5235, 1985.

    Article  PubMed  CAS  Google Scholar 

  84. Sperti, G., and W. S. Colucci. Phorbol ester—stimulated bidirectional transmembrane Cal` flux in A7rs vascular smooth muscle cells. Mol. Pharmacol. 32: 37–42, 1987.

    PubMed  CAS  Google Scholar 

  85. Stlouis, J., D. Regoli, J. Barabe, and W. K. Park. Myotropic actions of angiotensin and noradrenaline in strips of rabbit aortae. Can. J. Physiol. Pharmacol. 55: 1056–1069, 1977.

    Article  CAS  Google Scholar 

  86. Sugiura, M., T. Inagami, G. M. T. Hare, and J. A. Johns. Endothelin action: inhibition by a protein kinase C inhibitor and involvement of phosphoinositols. Biochem. Biophys. Res. Commun. 158: 170–176, 1989.

    Article  PubMed  CAS  Google Scholar 

  87. Sunako, M., Y. Kawahara, K. Hirata, T. Tsuda, M. Yokoyama, H. Fukuzaki, and Y. Takai. Mass analysis of 1,2-diacylglycerol in cultured rabbit vascular smooth muscle cells: comparison of stimulation by angiotensin II and endothelin. Hypertension 15: 84–88, 1990.

    Article  PubMed  CAS  Google Scholar 

  88. Tamaoki, T., H. Nomoto, I. Takahashi, Y. Kat°, M. MÖRimoto, and F. Tomita. Staurosporine, a potent inhibitor of phospholipid/Ca“ dependent protein kinase. Biochem. Biophys. Res. Commun. 135, 397–402, 1986.

    Article  PubMed  CAS  Google Scholar 

  89. Takuwa, Y., Y. Kasuya, N. Takuwa, M. Kudo, M. Yanagisawa, K. Got°, T. Masaki, and K. Yamashita. Endothelin receptor is coupled to phospholipase C via a pertussis toxininsensitive guanine nucleotide binding regulatory protein in vascular smooth muscle cells. J. Clin. Invest. 85: 653–658, 1990.

    Article  PubMed  CAS  Google Scholar 

  90. Taubman, M. B., B. C. Berk, S. Izumo, T. Tsua, R. W. Alexander, and B. Nadalginard. Angiotensin II induces c-fos mRna in aortic smooth muscle. J. Biol. Chem. 264: 526–530, 1989.

    PubMed  CAS  Google Scholar 

  91. Van Renterghem, C., P. Vigne, J. Barhanin, A. Schmidalliana, C. Frelin, and M. Lazdunski. Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem. Biophys. Res. Commun. 157: 977–985, 1988.

    Article  PubMed  Google Scholar 

  92. Wallnofer, A., S. Weir, U. Ruegg, and C. Cauvin. The mechanism of action of endothelin1 as compared with other agonists in vascular smooth muscle. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): S23 - S31, 1989.

    Article  PubMed  Google Scholar 

  93. Yamamoto, H., and C. Van Breemen. Inositol-1,4,5-trisphosphate releases calcium from skinned cultured smooth muscle cells. Biochem. Biophys. Res. Commun. 130: 270–274, 1985.

    Article  PubMed  CAS  Google Scholar 

  94. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki, A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  95. Yanagisawa, M., and T. Masaki. Molecular biology and biochemistry of endothelins. Tips 10: 374–378, 1989.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 American Physiological Society

About this chapter

Cite this chapter

Brock, T.A., Danthuluri, N.R. (1992). Cellular Actions of Endothelin in Vascular Smooth Muscle. In: Rubanyi, G.M. (eds) Endothelin. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7514-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7514-9_7

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7514-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics