Skip to main content

From Endotensin to Endothelin: The Discovery and Characterization of an Endothelial Cell—Derived Constricting Factor

  • Chapter
Endothelin

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

A quick review of the short but frenzied history of the endothelial cell—derived vasoconstrictor endothelin reflects science at its best. Pioneering observations were followed by the application of the modern tools of molecular biology and by rapid commercial availability. In turn, these events quickly led to the bandwagon description of the actions and mechanisms of action of this endothelial cell—derived factor. As the flow of basic information begins to yield unified ideas, and with specific quantitative approaches, we can start to evaluate the physiological and pathological importance of this unique bioactive peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agricola, K., G. Rubanyi, R. J. Paul, and R. F. Highsmith. Characterization of a potent coronary artery vasoconstrictor produced by endothelial cells in culture. Federation Proc. 43: 899, 1984.

    Google Scholar 

  2. Demey, J. G., and P. M. Vanhoutte. Heterogeneous behavior of the canine arterial and venous wall. Circ. Res. 51: 439–447, 1982.

    Article  CAS  Google Scholar 

  3. Demey, J. G., and P. M. Vanhoutte. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. (Lond.) 335: 65–74, 1983.

    CAS  Google Scholar 

  4. Furchgott, R. F., and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Gillespie, M. N., J. O. OwAsoyo, I. F. Mcmurtry, and R. F. O’Brien. Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J. Pharmacol. Exp. Ther. 236: 339–343, 1986.

    PubMed  CAS  Google Scholar 

  6. Hickey, K. A., G. Rubanyi, R. J. Paul, and R. F. Highsmith. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248 (Cell Physiol. 17 ): C550–0556, 1985.

    Google Scholar 

  7. Highsmith, R. F., D. C. Pang, and R. M. Rapoport. Endothelial cell—derived vasoconstrictors: mechanisms of action in vascular smooth muscle. J. Cardiovasc. Pharmacol. 13: S36 - S44, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Holden, W. E., and E. Mccall. Hypoxic vasoconstriction of porcine pulmonary artery strips in vitro requires an intact endothelium. Am. Reu. Respir. Dis. 127: 301, 1983.

    Google Scholar 

  9. Holden, W. E., and E. McCall. Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp. Lung Res. 7: 101–112, 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Hom, G. J., R. F. Highsmith, and D. C. Pang. In vivo hemodynamic effects of endothelium-derived constricting factor in the dog. Drug Den. Res. 18: 145–151, 1989.

    Article  CAS  Google Scholar 

  11. O’Brien, R. F., and I. F. Mcmurtry. Endothelial cell supernates contract bovine pulmonary artery rings. Am. Rev. Respir. Dis. 129: 337, 1984.

    Google Scholar 

  12. O’Brien, R. F., R. J. Robbins, and I. F. Mcmurtry. Endothelial cells in culture produce a vasoconstrictor substance. J. Cell. Physiol. 132: 263–270, 1987.

    Article  PubMed  Google Scholar 

  13. Pang, D. C., N. Sperelakis, and R. F. Highsmith. Effects of endothelium-derived constricting factor and calcium antagonists on calcium uptake into aortic vascular smooth muscle cells. Drug Dey. Res. 18: 153–164, 1989.

    Article  CAS  Google Scholar 

  14. Rapoport, R. M., K. A. Stauderman, and R. F. Highsmith. Effects of Edcf and endothelin on phosphatidylinositol hydrolysis and contraction in rat aorta. Am. J. Physiol. 258 (Cell Physiol. 27 ): C122 - C131, 1990.

    Google Scholar 

  15. Rubanyi, G., and P. M. Vanhoutte. Hypoxia releases a vasoconstrictor substance from the coronary arterial endothelium. Circulation 70: 122, 1984.

    Google Scholar 

  16. Rubanyi, G., and P. M. Vanhoutte. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol. (Lond.) 364: 45–56, 1986.

    Google Scholar 

  17. Vanhoutte, P. M. Effects of anoxia and glucose depletion on isolated veins of the dog. Am. J. Physiol. 230: 1261–1268, 1976.

    PubMed  CAS  Google Scholar 

  18. Van Neuten, J. M., and P. M. Vanhoutte. Effect of Cat-’ antagonist lidoflazine on normoxic and anoxic contractions of canine coronary arterial smooth muscle. Eur. J. Pharmacol. 64: 173–176, 1980.

    Article  Google Scholar 

  19. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 American Physiological Society

About this chapter

Cite this chapter

Highsmith, R.F. (1992). From Endotensin to Endothelin: The Discovery and Characterization of an Endothelial Cell—Derived Constricting Factor. In: Rubanyi, G.M. (eds) Endothelin. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7514-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7514-9_2

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7514-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics