Skip to main content

One- and Two-Photon Confocal Fluorescence Lifetime Imaging and Its Applications

  • Chapter
Methods in Cellular Imaging

Part of the book series: Methods in Physiology ((METHPHYS))

Abstract

Fluorescence microscopy is a commonly used tool in biological and biophysical research. The great power of fluorescence microscopy lies in the excellent contrast, selectivity, and sensitivity that can be achieved with this technique. The high contrast stems from the shift between the wavelength at which the specimen is excited and the wavelength of the emitted fluorescence light. This shift, the Stokes’ shift, enables the efficient suppression of scattered excitation light by means of simple optical cut-off or bandpass filters. The contrast and sensitivity that can be realized are so high that even fluorescence imaging of single molecules can be accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballew, R. M., and J. N. Demas. An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal. Chem. 61: 30–33, 1989.

    Article  CAS  Google Scholar 

  • Bambot, S. B., R. Holavanahali, J. R. Lakowicz, G. M. Carter, and G. Rao. Phase fluorometric sterilizable optical oxygen sensor. Biotech. Bioeng. 43: 1139–1145, 1994.

    Article  CAS  Google Scholar 

  • Bastiaens, P. I. H., and A. Squire. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9: 48–52, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Berlin, J. R., and M. Konishi. Cat+ transients in cardiac myocytes measured with high and low affinity Cat+ indicators. Biophys. J. 65: 1632–1647, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Buurman, E. P., R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. van Veen, P. M. Houpt, and Y. K. Levine. Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14: 155, 1992.

    Article  Google Scholar 

  • Costerton, J. W., Z. Lewandowski, D. DeBeer, D. E. Caldwell, D. R. Korber, and G. James. Biofilms, the customized microniche. J. Bacteriol. 176: 2137–2142, 1994.

    PubMed  CAS  Google Scholar 

  • Denk, W., J. H. Strickler, and W. W. Webb. Two-photon laser scanning fluorescence microscopy. Sci. Rep. 248: 73, 1990.

    CAS  Google Scholar 

  • French, T., P. T. C. So, D. J. Weaver, T. Coehlo-Sampaio, E. Grafton, E. W. Voss, and J. Carrero. Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J. Microsc. 185: 339–353, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gadella, T. W. J., T. M. Jovin, and R. M. Clegg. Fluorescence lifetime imaging microscopy (FLIM)—Spatial resolutions of microstructures on the nanosecond time scale. Biophys. Chem. 48: 221–239, 1993.

    Article  CAS  Google Scholar 

  • Gerritsen, H. C., R. Sanders, A. Draaijer, and Y. K. Levine. The photon economy of fluorescence lifetime imaging. Scanning 18: 55–56, 1996.

    Google Scholar 

  • Gerritsen, H. C., R. Sanders, A. Draaijer and Y. K. Levine. Fluorescence lifetime imaging of oxygen in living cells. J. Fluorescence 7 (1): 11–16, 1997.

    Article  CAS  Google Scholar 

  • Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3340–3450, 1985.

    Google Scholar 

  • Herman, B., R. Wodnicki, S. Kwon, A. Periasamy, G. W. Gordon, N. Mahajan, and X. F. Wang. Recent developments in monitoring calcium and protein interactions in cells using fluorescence lifetime microscopy. J. Fluorescence 7 (1): 85–92, 1997.

    Article  CAS  Google Scholar 

  • Köllner, M., and J. Wolfrum. How many photons are necessary for fluorescence-lifetime measurements? Chem Phys. Lett. 200 (1,2): 199–204, 1992.

    Article  Google Scholar 

  • Lakowicz, J. R. Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1986.

    Google Scholar 

  • Lakowicz, J. R., and K. Berndt. Lifetime-selective fluorescence imaging using an rf phase-sensitive camera. Rev. Sci. Instrum. 62: 1727–1734, 1991.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R., H. Szmacinski, and K. Nowaczyk. Fluorescence lifetime imaging of calcium using Quin-2. Cell Calcium 13: 131–147, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ni, T., and L. A. Melton. Fluorescence lifetime imaging: An approach for fuel equivalence ratio imaging. Appl. Spectrosc. 45 (6): 938, 1991.

    Article  CAS  Google Scholar 

  • Periasamy, A., R. Wodnicki, X. F. Wang, S. Kwon, G. W. Gordon, and B. Herman. Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye-laser system. Rev. Sci. Instrum. 67: 3722–3731, 1996.

    Article  CAS  Google Scholar 

  • Rink, T. J., R. Y. Tsien, and T. Pozzan. Cytoplasmic pH and free Mgt+ in lymphocytes. J. Cell Biol. 95: 189, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, R., A. Draaijer, H. C. Gerritsen, P. Houpt, and Y. K. Levine. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal. Biochem. 227: 302–308, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, R., H. C. Gerritsen, A. Draaijer, P. Houpt, and Y. K. Levine. Fluorescence lifetime imaging of free calcium in single cells. Bioimaging 2 (3): 131–138, 1994.

    Article  CAS  Google Scholar 

  • Scully, A. D., R. B. Ostler, D. Phillips, R. O. O’Neill, K. M. S. Townsend, A. W. Parker, and A. J. MacRobert. Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms. Bioimaging 5 (1): 9–18, 1997.

    Article  Google Scholar 

  • Sytsma, J., J. M. Vroom, C. J. de Grauw, and H. C. Gerritsen. Time gated fluorescence lifetime imaging and micro-volume spectroscopy using two-photon excitation. J. Microsc. 191 (1): 39–51, 1998.

    Article  CAS  Google Scholar 

  • Tsien, R. Y., and M. Poenie. Fluorescence ratio imaging: A new window into intracellular ionic signaling. Trends Biochem. Sci. 11: 450–455, 1986.

    Article  CAS  Google Scholar 

  • Vroom, J. M., K. J. de Grauw, H. C. Gerritsen, D. J. Bradshaw, P. D. Marsh, G. K. Watson, J. J. Birmingham, and C. Allison. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65 (8): 3502–3511, 1999.

    PubMed  CAS  Google Scholar 

  • Wang, X. F., T. Uchida, D. M. Coleman, and S. Minami. A two-dimensional fluorescence life- time imaging system using a gated image intensifier. Appl. Spectrosc. 45 (3): 360, 1991.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Physiological Society

About this chapter

Cite this chapter

Gerritsen, H.C., de Grauw, K. (2001). One- and Two-Photon Confocal Fluorescence Lifetime Imaging and Its Applications. In: Periasamy, A. (eds) Methods in Cellular Imaging. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7513-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7513-2_18

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7513-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics