Skip to main content

Wide-Field, Confocal, Two-Photon, and Lifetime Resonance Energy Transfer Imaging Microscopy

  • Chapter
Methods in Cellular Imaging

Abstract

The light microscope has been used for almost a century to produce images of cells, and this approach has contributed enormously to our understanding of cellular structure and function (Bright and Taylor, 1986; Herman, 1998; Inoué and Spring, 1997; Pawley, 1995; Periasamy and Herman, 1994). In turn, molecular biological studies over the past few decades have shown that cellular events, such as signal transduction and gene transcription, require the assembly of proteins into specific macromolecular complexes. What we require now are methods to visualize these protein—protein associations as they occur in the living cell. Recent advances in digital imaging coupled with the development of new fluorescent fluorophores now provide the tools to begin the study of protein-protein interactions in the intact cell. In this chapter we describe four different imaging techniques that apply the method of fluorescence resonance energy transfer (FRET) to surpass the optical limitations of the light microscope, allowing detection of the physical interactions of proteins in the living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubin, J. E. Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27: 36–43, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Ballew, R. M., and J. N. Demas. An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal. Chem. 61: 30–33, 1989.

    Article  CAS  Google Scholar 

  • Barroso, M., and E. S. Sztul. Basolateral to apical transcytosis is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J. Cell Biol. 124: 83–100, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Bright, G. R., and D. L. Taylor. Imaging at low light level in fluorescence microscopy. In: Applications of Fluorescence in the Biomedical Sciences, edited by D. L. Taylor, F. Lanni, A. S. Waggoner, R. F. Murphy, and R. R. Birge. New York: Alan R. Liss, 1986, pp. 257–288.

    Google Scholar 

  • Clegg, R. M. Fluorescence resonance energy transfer. In: Fluorescence Imaging Spectroscopy and Microscopy, Chemical Analysis Series, Vol. 137, edited by X. E Wang and B. Herman. New York: John Wiley & Sons, 1996, pp. 179–251.

    Google Scholar 

  • Day, R. N. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12: 1410–1419, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Denk, W., J. H. Strickler, and W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science 248: 73–76, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Elangovan, M., and A. Periasamy. Bleed-through and photobleaching corection in multi-photon FRET microscopy. SPIE Proc. 4262: In Press, 2001.

    Google Scholar 

  • Förster, T. Delocalized excitation and excitation transfer. In: Modern Quantum Chemistry, Vol. 3, edited by O. Sinanoglu. New York: Academic Press, 1965, pp. 93–137.

    Google Scholar 

  • Goppert-Mayer, M. Ueber Elementarakte mit zwei Quantenspruengen. Ann. Phys. 9: 273–295, 1931.

    Article  CAS  Google Scholar 

  • Gordon, G. W., G. Berry, X. H. Liang, B. Levine, and B. Herman. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74: 2702–2713, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Guo, C., S. K. Dower, D. Holowka, and B. Baird. Fluorescence resonance energy transfer reveals interleukin (IL)-1—dependent aggregation of IL-1 type I receptors that correlates with receptor activation. J. Biol. Chem. 270: 27562–27568, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Heim, R., and R. Y. Tsien. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178–182, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Herman, B. Fluorescence Microscopy, 2nd ed. New York: Springer-Verlag, 1998. Inoue, S., and K. Spring. Video Microscopy, 2nd ed. New York: Plenum Press, 1997.

    Google Scholar 

  • Jurgens, L., D. Arndt-Jovin, I. Pecht, and T. M. Jovin. Proximity relationships between the type I receptor for Fc epsilon (Fc epsilon RI) and the mast cell function-associated antigen (MAFA) studied by donor photobleaching fluorescence resonance energy transfer microscopy. Eur. J. Immunol. 26: 84–91, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, W., and C. G. B. Garrett. Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett. 7: 229–231, 1961.

    Article  CAS  Google Scholar 

  • Kenworthy, K. A., N. Petranova, and M. Edidin. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11: 1645–1655, 2000.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed. New York: Plenum Press, 1999.

    Book  Google Scholar 

  • Pawley, J. Handbook of Biological Confocal Microscopy, 2nd ed. New York: Plenum Press, 1995. Periasamy, A. Two-photon excitation energy transfer microscopy. SPIE Proc. 3921:299–304, 2000.

    Google Scholar 

  • Periasamy, A., and R. N. Day. FRET imaging of Pit-1 protein interactions in living cells. J. Biomed. Opt. 3: 154–160, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Periasamy, A., and R. N. Day. Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. Methods Cell Biol. 58: 293–314, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Periasamy, A., and B. Herman. Computerized fluorescence microscopic vision in the biomedical sciences. J. Comput. Assist. Microsc. 6: 1–26, 1994.

    Google Scholar 

  • Periasamy, A., K. K. Sharman, R. Ahuja, I. Eto, and D. L. Brautigan. Fluorescence lifetime imaging of green fluorescent protein of living cells. SPIE Proc. 3604: 6–12, 1999a.

    Article  CAS  Google Scholar 

  • Periasamy, A., K. K. Sharman, and J. N. Demas. Fluorescence lifetime imaging microscopy using rapid lifetime determination method: Theory and applications. Biophys. J. 76: A10, 1999b.

    Google Scholar 

  • Periasamy, A., P. Wodnicki, X. F. Wang, S. Kwon, G. W. Gordon, and B. Herman. Time resolved fluorescence lifetime imaging microscopy using picosecond pulsed tunable dye laser system. Rev. Sci. Instrum. 67: 3722–3731, 1996.

    Article  CAS  Google Scholar 

  • Sharman, K. K., J. N. Demas, H. Asworth, and A. Periasamy. Error analysis of the rapid lifetime determination (RLD) method for double exponential decays: Evaluating different window systems. Anal. Chem. 71: 947–952, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47: 819–846, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. F., T. Uchida, D. M. Coleman, and S. Minami. A two-dimensional fluorescence lifetime imaging system using a gated image intensifier. Appl. Spectrosc. 45: 360–366, 1991.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Physiological Society

About this chapter

Cite this chapter

Periasamy, A. et al. (2001). Wide-Field, Confocal, Two-Photon, and Lifetime Resonance Energy Transfer Imaging Microscopy. In: Periasamy, A. (eds) Methods in Cellular Imaging. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7513-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7513-2_17

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7513-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics