Skip to main content

Two-Photon Microscopy in Highly Scattering Tissue

  • Chapter
Methods in Cellular Imaging

Part of the book series: Methods in Physiology ((METHPHYS))

Abstract

Molecular excitation by two-photon absorption and the subsequent fluorescence have proved to be a useful tool for imaging biological systems using laser-scanning microscopy (Denk et al., 1990). In two-photon fluorescence microscopy (TPM), near-infrared (NIR) light is used to excite transitions of twice the energy of a single photon. One of the main advantages of TPM over conventional fluorescence imaging is that the NIR excitation light penetrates more deeply into tissue than the corresponding one-photon excitation wavelength. This is because factors governing light propagation (i.e., tissue absorption and scattering) are substantially reduced in this spectral region. As a result, TPM offers the possibility of probing relatively thick tissue with submicron resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. R., and J. A. Parrish. The optics of human skin. J. Invest. Dermatol. 77: 13–19, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Centonze, V., and J. White. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75: 2015–2024, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cheong W. A review of the optical properties of biological tissues. IEEE J. Quantum Electronics 26: 2166–2185, 1990.

    Article  Google Scholar 

  • Denk, W., J. Strickler, and W. Webb. Two-photon laser scanning fluorescence microscopy. Science 248: 78–76, 1990.

    Article  Google Scholar 

  • Denk, W., D. Piston, and W, Webb. Two-photon molecular excitation in laser-scanning microscopy. In: Handbook of Biological Confocal Microscopy, edited by J. B. Pawley. New York: Plenum Press, 1995, pp. 445–458.

    Google Scholar 

  • Dunn, A., and R. Richards-Kortum. Three-dimensional computation of light scattering from cells. IEEE J. Spec. Top. Quantum Electronics 2: 898–905, 1997.

    Article  Google Scholar 

  • Dunn, A., C. Smithpeter, R. Richards-Kortum, and A.J. Welch. Sources of contrast in con-focal reflectance imaging. Appl. Opt. 35: 3441–3446, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, A. K., V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg. Influence of optical properties on two-photon fluorescence imaging in turbid samples. Appl. Opt. 39: 1194–1201, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Fishkin, J., O. Coquoz, E. Anderson, M. Brenner, and B. Tromberg. Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject. Appl. Opt. 36: 10–20, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Fork, R. L., O. E. Martinez, and J. P. Gordon. Nagative dispersion using prism pairs. Opt. Lett. 9: 150, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gan, X., S. Schilders, and M. Gu. Image formation in turbid media under a microscope. JOSA A 15: 2052–2058, 1998.

    Article  Google Scholar 

  • Hamamatsu Photonics. Photomultiplier Tube. Hamatsu Photonics, Bridgewater, NJ, USA, 1994.

    Google Scholar 

  • Hargrave, P., R W. Nicholson, D. T. Delpy, and M. Firbank. Optical properties of multicellular tumour spheroids. Phys. Med. Biol. 41: 1067–1072, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hielscher, A. H., et al. Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions. Appl. Opt. 36: 125–135, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld, D., P. Mitra, F. Helmchen, and W. Denk. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. U.S.A. 95: 15741–15746, 1998.

    Article  PubMed  CAS  Google Scholar 

  • König, K., L. Yagang, G. J. Sonek, M. W. Berns, and B. J. Tromberg. Autofluorescence spectroscopy of optically trapped cells. Photochem. Photobiol. 62: 830–835, 1995.

    Article  PubMed  Google Scholar 

  • Madsen, S. J., C. Sun, B. J. Tromberg, V. R Wallace, and H. Hirschberg. Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid. Photochem. Photobiol. 72: 128–134, 2000b.

    Article  PubMed  CAS  Google Scholar 

  • Morgner, U., F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, and E. P. Ippen. Sub-two-cycle pulses form a kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24: 411–413, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Mourant, J. R., J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37: 3586–3593, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, C., and M. Gu. Image formation in two-photon fluorescence microscopy. Optik 86: 104–106, 1990.

    CAS  Google Scholar 

  • Smithpeter, C., A. Dunn, A. Welch, and R. Richards-Kortum. Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37: 2749–2754, 1998.

    Article  PubMed  CAS  Google Scholar 

  • So, P. T. C, C. Buehler, K. Kim, and I. Kochevar. Tissue imaging using two-photon video rate microscopy. SPIE BiOS 99: 3604–3607, 1999.

    Google Scholar 

  • So, R T. C, H. Kim, and I. E. Kochevar. Two-photon deep tissue ex-vivo imaging of mouse dermal and subcutaneous structures. Opt. Express 3: 339–350, 1998.

    Article  PubMed  CAS  Google Scholar 

  • van Staveren, H., C. Moes, J. van Marle, S. Prahl, and M. van Gemert. Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm. Appl. Opt. 30: 4507–4514, 1991.

    Article  PubMed  Google Scholar 

  • Xu, C., and W. Webb. Measurement of two-photon excitation cross-sections of molecular fluorophores with data from 690 to 1050 nm. JOSA B 13: 481–491, 1996.

    Article  CAS  Google Scholar 

  • Xu, C., W. Zipfel, J. Shear, R. Williams, and W. Webb. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. U.S.A. 93: 10763–10768, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Youn, J., S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvan, and T. E. Milner. Optical and thermal properties of nasal septal cartilage. Laser Surg. Med. 27: 119–128, 2000.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Physiological Society

About this chapter

Cite this chapter

Wallace, V.P., Dunn, A.K., Coleno, M.L., Tromberg, B.J. (2001). Two-Photon Microscopy in Highly Scattering Tissue. In: Periasamy, A. (eds) Methods in Cellular Imaging. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7513-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7513-2_11

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7513-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics