Skip to main content

Oxygen Radicals in Inflammation

  • Chapter
Physiology of Inflammation

Part of the book series: Methods in Physiology Series ((METHPHYS))

  • 437 Accesses

Abstract

Oxygen radicals have been implicated as mediators of inflammatory responses associated with a number of disease states including rheumatoid arthritis, inflammatory bowel disease, pancreatitis, and ischemia and reperfusion (I/R) injury. The goal of this chapter is to define the nature of the involvement of oxygen radicals in the initiation and perpetuation of an inflammatory response. We (a) provide a brief overview of the biochemistry of oxygen radicals; (b) describe sources, biological targets, and mechanisms for neutralization of these reactive oxygen species; and (c) define the role of these radicals in the recruitment and activation of leukocytes into inflamed tissues. Particular attention will be given to the contribution of oxygen radicals to the pathobiology of I/R injury, a condition that is associated with markedly enhanced production of oxygen radicals by endothelial cells, neutrophils, and various auxiliary cells (mast cells) that also contribute to the overall injury process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aruoma, O. I., Halliwell, B., and Dizdaroglu, M. (1989) Iron ion-dependent modification of bases in DNA by the superoxide radical generating system hypoxanthine/xanthine oxidase. J. Biol. Chem. 264: 13024 - 13028.

    PubMed  CAS  Google Scholar 

  • Birnboim, H. C., and Kanabus-Kominska, M. (1987) The production of DNA strand breaks in human leukocytes by superoxide may involve a metabolic process. Proc. Natl. Acad. Sci. USA 82: 6820 - 6824.

    Article  Google Scholar 

  • Formigli, L., Ibba Manneschi, L., Tani, A., Gandini, E., Adembri, C., Pratesi, C., Novelli, G. P., and Zecchi Orlandini, S. (1997) Vitamin E prevents neutrophil accumulation and attenuates tissue damage in ischemic-reperfused human skeletal muscle. Histol. Histopathol. 12: 663 - 669.

    CAS  Google Scholar 

  • Fridovich, I. (1998) An overview of oxyradicals in medical biology. In: Oxyradicals in Molecular Biology. J. M. McCord, ed. Greenwich, CT: JAI Press, pp. 1 - 14.

    Chapter  Google Scholar 

  • Granger, D. N. (1988) Role of xanthine oxidase and granulocytes in ischemia–reperfusion injury. Am. J. Physiol. 255: H1269–H1275.

    PubMed  CAS  Google Scholar 

  • Granger, D. N., and Kubes, P. (1994) The microcirculation and inflammation: modulation of leukocyte–endothelial cell adhesion. j Leukoc. BioL 55: 662 - 675.

    PubMed  CAS  Google Scholar 

  • Granger, D. N., and Korthuis, R. J. (1995) Physiological mechanisms of postischemic tissue injury. Annu. Rev. PhysioL 57: 311 - 332.

    Article  PubMed  CAS  Google Scholar 

  • Grisham, M. B., Granger, D. N., and Lefer, D. J. (1998) Modulation of leukocyte–endothelial interactions by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease. Free Rad. Biol. Med. 25: 404 - 433.

    Article  PubMed  CAS  Google Scholar 

  • Kehrer, J. P. (1993) Free radicals as mediators of tissue injury and disease. Grit. Rev. Toxicol. 23: 21 - 48.

    Article  CAS  Google Scholar 

  • Maxwell, S.R.J. (1995) Prospects for the use of antioxidant therapies. Drugs 49: 345 - 361.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, T. M., Modur, V., Prescott, S. M., and Zimmerman, G. A. (1997) Molecular mechanisms of early inflammation. Thromb. Haemost. 78: 302 - 305.

    PubMed  CAS  Google Scholar 

  • Morris, C. J., Earl, J. R., Trenam, C. W., and Blake, D. R. (1995) Reactive oxygen species and iron—a dangerous partnership in inflammation. Int. J. Biochem. Cell. Biol. 27: 109 - 122.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S. K., and McCord, J. M. (1998) Iron, oxygen radicals, and disease. In: Oxyradicals in Molecular Biology. J. M. McCord, ed. Greenwich, CT: JAI Press, pp. 157 - 183.

    Chapter  Google Scholar 

  • Panes, J., and Granger, D. N. (1998) Leukocyte–endothelial cell interactions: Molecular mechanisms and implications in gastrointestinal disease. GastroenteroL 114: 1066 - 1090.

    Article  CAS  Google Scholar 

  • Winklhofer-Roob, B. M. (1994) Oxygen free radicals and antioxidants in cystic fibrosis: the concept of an oxidant–antioxidant imbalance. Acta Paediatr. SuppL 395: 49 - 57.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Physiological Society

About this chapter

Cite this chapter

Harris, N.R., Granger, D.N. (2001). Oxygen Radicals in Inflammation. In: Ley, K. (eds) Physiology of Inflammation. Methods in Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7512-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7512-5_21

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7512-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics