Skip to main content

Neuronal Avalanches

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 83 Accesses

Synonyms

Balanced propagation; Critical branching process; Neuronal cascades; Power-law distributed patterns; Scale-invariant patterns

Definition

Spatiotemporal patterns comprised of local neuronal activity events that follow scale-invariant statistics. Pattern statistics is quantified by a power law distribution in pattern size, s, and pattern duration, t. The balanced propagation of activity during avalanche unfolding takes on the form of a branching process. Specifically, the probability distribution P(s) takes the functional form of a power law P(s) ~ s−α, with exponent α = 3/2, and P(t) ~ s−β with β = 2. The branching parameter, σ, estimated by the ratio of future to current events during an avalanche is critical, i.e., σ = 1. On average, neuronal activity neither grows nor decreases during avalanching.

Detailed Description

History of Neuronal Avalanches

Experimentally, neuronal avalanches were first identified in 2003 in the spontaneous activity of cortex slice cultures and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arviv O, Medvedovsky M, Sheintuch L, Goldstein A, Shriki O (2016) Deviations from critical dynamics in interictal epileptiform activity. J Neurosci 36:12276–12292

    Article  CAS  Google Scholar 

  • Bak P (1997) How nature works. Oxford University Press, Oxford

    Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    Article  CAS  Google Scholar 

  • Bellay T, Klaus A, Seshadri S, Plenz D (2015) Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state. elife 4:e07224

    Article  Google Scholar 

  • Berger DL, de Arcangelis L, Herrmann HJ (2017) Spatial features of synaptic adaptation affecting learning performance. Sci Rep 7:11016

    Article  Google Scholar 

  • Bornholdt S, Rohl T (2003) Self-organized critical neural networks. Phys Rev E Stat Nonlinear Soft Matter Phys 67:066118

    Article  Google Scholar 

  • Buice MA, Cowan JD (2009) Statistical mechanics of the neocortex. Prog Biophys Mol Biol 99:53–86

    Article  Google Scholar 

  • Chen DM, Wu S, Guo A, Yang ZR (1995) Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons. J Phys A 28:5177–5182

    Article  Google Scholar 

  • Chialvo DR (2010) Emergent complex neural dynamics. Nat Phys 6:744–750

    Article  CAS  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703

    Article  Google Scholar 

  • Clawson WP, Wright NC, Wessel R, Shew WL (2017) Adaptation towards scale-free dynamics improves cortical stimulus discrimination at the cost of reduced detection. PLoS Comput Biol 13:e1005574

    Article  Google Scholar 

  • Cocchi L, Gollo LL, Zalesky A, Breakspear M (2017) Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog Neurobiol 158:132

    Article  Google Scholar 

  • de Arcangelis L, Herrmann HJ (2010) Learning as a phenomenon occurring in a critical state. Proc Natl Acad Sci USA 107:3977–3981

    Article  Google Scholar 

  • de Arcangelis L, Perrone-Capano C, Herrmann HJ (2006) Self-organized criticality model for brain plasticity. Phys Rev Lett 96:028107

    Article  Google Scholar 

  • Del Papa B, Priesemann V, Triesch J (2017) Criticality meets learning: criticality signatures in a self-organizing recurrent neural network. PLoS One 12:e0178683

    Article  Google Scholar 

  • di Santo S, Villegas P, Burioni R, Muñoz MA (2017) Simple unified view of branching process statistics: random walks in balanced logarithmic potentials. Phys Rev E 95:032115

    Article  Google Scholar 

  • di Santo S, Villegas P, Burioni R, Muñoz MA (2018) Landau–Ginzburg theory of cortex dynamics: scale-free avalanches emerge at the edge of synchronization. Proc Natl Acad Sci USA 115:E1356. 201712989

    Article  Google Scholar 

  • Eurich CW, Herrmann JM, Ernst UA (2002) Finite-size effects of avalanche dynamics. Phys Rev E Stat Nonlinear Soft Matter Phys 66:066137

    Article  Google Scholar 

  • Fagerholm ED, Scott G, Shew WL, Song C, Leech R, Knöpfel T, Sharp DJ (2016) Cortical entropy, mutual information and scale-free dynamics in waking mice. Cereb Cortex 26:3945

    Article  Google Scholar 

  • Fraiman D, Balenzuela P, Foss J, Chialvo DR (2009) Ising-like dynamics in large-scale functional brain networks. Phys Rev E Stat Nonlinear Soft Matter Phys 79:061922

    Article  Google Scholar 

  • Friedman N, Ito S, Brinkman BAW, Shimono M, DeVille REL, Dahmen KA, Beggs JM, Butler TC (2012) Universal critical dynamics in high resolution neuronal avalanche data. Phys Rev Lett 108:208102

    Article  Google Scholar 

  • Gautam H, Hoang TT, McClanahan K, Grady SK, Shew WL (2015) Maximizing sensory dynamic range by tuning the cortical state to criticality. PLoS Comput Biol 11:e1004576

    Article  Google Scholar 

  • Gireesh ED, Plenz D (2008) Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc Natl Acad Sci USA 105:7576–7581

    Article  CAS  Google Scholar 

  • Harris TE (1963) The theory of branching processes. Springer, Berlin

    Book  Google Scholar 

  • Hernandez-Urbina V, Herrmann JM (2017) Self-organized criticality via retro-synaptic signals. Front Phys 4:54

    Article  Google Scholar 

  • Hesse J, Gross T (2014) Self-organized criticality as a fundamental property of neural systems. Front Syst Neurosci 8:166

    Article  Google Scholar 

  • Hidalgo J, Grilli J, Suweis S, Muñoz MA, Banavar JR, Maritan A (2014) Information-based fitness and the emergence of criticality in living systems. Proc Natl Acad Sci USA 111:10095–10100

    Article  CAS  Google Scholar 

  • Kinouchi O, Copelli M (2006) Optimal dynamical range of excitable networks at criticality. Nat Phys 2:348–351

    Article  CAS  Google Scholar 

  • Klaus A, Yu S, Plenz D (2011) Statistical analyses support power law distributions found in neuronal avalanches. PLoS One 6:e19779

    Article  CAS  Google Scholar 

  • Larremore DB, Carpenter MY, Ott E, Restrepo JG (2012) Statistical properties of avalanches in networks. Phys Rev E 85:066131

    Article  Google Scholar 

  • Levina A, Priesemann V (2017) Subsampling scaling. Nat Commun 8:15140

    Article  CAS  Google Scholar 

  • Levina A, Hermann JM, Geisel T (2007) Dynamical synapses causing self-organized criticality in neural networks. Nat Phys 3:857–860

    Article  CAS  Google Scholar 

  • Lombardi F, Herrmann HJ, Perrone-Capano C, Plenz D, de Arcangelis L (2012) Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. Phys Rev Lett 108:228703

    Article  CAS  Google Scholar 

  • Lombardi F, Herrmann H, Plenz D, de Arcangelis L (2014) On the temporal organization of neuronal avalanches. Front Syst Neurosci 8:204

    Article  Google Scholar 

  • Lombardi F, Herrmann HJ, Plenz D, de Arcangelis L (2016) Temporal correlations in neuronal avalanche occurrence. Sci Rep 6:24690

    Article  CAS  Google Scholar 

  • Martinello M, Hidalgo J, Maritan A, di Santo S, Plenz D, Muñoz MA (2017) Neutral theory and scale-free neural dynamics. Phys Rev X 7:041071

    Google Scholar 

  • Mazzoni A, Broccard FD, Garcia-Perez E, Bonifazi P, Ruaro ME, Torre V (2007) On the dynamics of the spontaneous activity in neuronal networks. PLoS One 2:e439

    Article  Google Scholar 

  • Meisel C, Gross T (2009) Adaptive self-organization in a realistic neural network model. Phys Rev E 80:061917

    Article  Google Scholar 

  • Meisel C, Storch A, Hallmeyer-Elgner S, Bullmore E, Gross T (2012) Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput Biol 8:e1002312

    Article  CAS  Google Scholar 

  • Meisel C, Olbrich E, Shriki O, Achermann P (2013) Fading signatures of critical brain dynamics during sustained wakefulness in humans. J Neurosci 33:17363–17372

    Article  CAS  Google Scholar 

  • Meisel C, Schulze-Bonhage A, Freestone D, Cook MJ, Achermann P, Plenz D (2015) Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc Natl Acad Sci USA 112:14694–14699

    Article  CAS  Google Scholar 

  • Michiels van Kessenich L, Luković M, de Arcangelis L, Herrmann HJ (2018) Critical neural networks with short- and long-term plasticity. Phys Rev E 97:032312

    Article  CAS  Google Scholar 

  • Millman D, Mihalas S, Kirkwood A, Niebur E (2010) Self-organized criticality occurs in non-conservative neuronal networks during ‘up’ states. Nat Phys 6:801

    Article  CAS  Google Scholar 

  • Milton JG (2012) Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur J Neurosci 36:2156–2163

    Article  Google Scholar 

  • Muñoz MA (2017) Colloquium: criticality and dynamical scaling in living systems. Rev Mod Phys 90:031001

    Google Scholar 

  • Muñoz MA, Dickman R, Vespignani A, Zapperi S (1999) Avalanche and spreading exponents in systems with absorbing states. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 59:6175–6179

    PubMed  Google Scholar 

  • Olami Z, Feder HJS, Christensen K (1992) Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett 68:1244–1247

    Article  CAS  Google Scholar 

  • Osorio I, Frei MG, Sornette D, Milton J, Lai YC (2010) Epileptic seizures: quakes of the brain. Phys Rev E 82:021919

    Article  Google Scholar 

  • Palva JM, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K, Palva S (2013) Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc Natl Acad Sci USA 110:3585–3590

    Article  CAS  Google Scholar 

  • Papanikolaou S, Bohn F, Sommer RL, Durin G, Zapperi S, Sethna JP (2011) Universality beyond power laws and the average avalanche shape. Nat Phys 7:316–320

    Article  CAS  Google Scholar 

  • Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S (2008) Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 153:1354–1369

    Article  CAS  Google Scholar 

  • Petermann T, Thiagarajan T, Lebedev MA, Nicolelis MA, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci USA 106:15921–15926

    Article  CAS  Google Scholar 

  • Plenz D (2012) Neuronal avalanches and coherence potentials. Eur Phys J Spec Topics 205:259–301

    Article  Google Scholar 

  • Plenz D, Niebur E (2014) Criticality in neural systems. Wiley-VCH, Berlin

    Book  Google Scholar 

  • Poil SS, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K (2012) Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J Neurosci 32:9817–9823

    Article  CAS  Google Scholar 

  • Priesemann V, Munk MH, Wibral M (2009) Subsampling effects in neuronal avalanche distributions recorded in vivo. BMC Neurosci 10:40

    Article  Google Scholar 

  • Priesemann V, Valderrama M, Wibral M, Le Van Quyen M (2013) Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans. PLoS Comput Biol 9:e1002985

    Article  CAS  Google Scholar 

  • Ribeiro TL, Copelli M, Caixeta F, Belchior H, Chialvo DR, Nicolelis MA, Ribeiro S (2010) Spike avalanches exhibit universal dynamics across the sleep-wake cycle. PLoS One 5:e14129

    Article  CAS  Google Scholar 

  • Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches. PLoS One 9:e94992

    Article  Google Scholar 

  • Rybarsch M, Bornholdt S (2014a) Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class. PloS One 9:e93090

    Article  Google Scholar 

  • Rybarsch M, Bornholdt S (2014b) Self-organized criticality in neural network models. In: Criticality in neural systems, Wiley-VCH, Berlin, pp 227–254

    Chapter  Google Scholar 

  • Scott G, Fagerholm ED, Wiley-VCH, Berlin, Mutoh H, Leech R, Sharp DJ, Shew WL, Knopfel T (2014) Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics. J Neurosci 34:16611–16620

    Article  CAS  Google Scholar 

  • Seshadri S, Klaus A, Winkowski DE, Kanold PO, Plenz D (2018) Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment. Transl Psychiatry 8:3

    Article  Google Scholar 

  • Sethna JP, Dahmen KA, Myers CR (2001) Crackling noise. Nature 410:242–250

    Article  CAS  Google Scholar 

  • Shew WL, Plenz D (2013) The functional benefits of criticality in the cortex. Neuroscientist 19:88–100

    Article  Google Scholar 

  • Shew WL, Yang H, Petermann T, Roy R, Plenz D (2009) Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J Neurosci 29:15595–15600

    Article  CAS  Google Scholar 

  • Shew WL, Yang H, Yu S, Roy R, Plenz D (2011) Information capacity is maximized in balanced cortical networks with neuronal avalanches. J Neurosci 5:55–63

    Article  Google Scholar 

  • Shew WL, Clawson WP, Pobst J, Karimipanah Y, Wright NC, Wessel R (2015) Adaptation to sensory input tunes visual cortex to criticality. Nat Phys. https://doi.org/10.1038/nphys3370

    Article  CAS  Google Scholar 

  • Shriki O, Alstott J, Carver F, Holroyd T, Henson RN, Smith ML, Coppola R, Bullmore E, Plenz D (2013) Neuronal avalanches in the resting MEG of the human brain. J Neurosci 33:7079–7090

    Article  CAS  Google Scholar 

  • Solovey G, Miller KJ, Ojemann JG, Magnasco MO, Cecchi GA (2012) Self-regulated dynamical criticality in human ECoG. Front Integr Neurosci 6

    Google Scholar 

  • Stassinopoulos D, Bak P (1995) Democratic reinforcement: a principle for brain function. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51:5033–5039

    CAS  PubMed  Google Scholar 

  • Stewart CV, Plenz D (2006) Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. J Neurosci 26:8148–8159

    Article  CAS  Google Scholar 

  • Tetzlaff C, Okujeni S, Egert U, Worgotter F, Butz M (2010) Self-organized criticality in developing neuronal networks. PLoS Comput Biol 6:e1001013

    Article  Google Scholar 

  • Thiagarajan TC, Lebedev MA, Nicolelis MA, Plenz D (2010) Coherence potentials: loss-less, all-or-none network events in the cortex. PLoS Biol 8:e1000278

    Article  Google Scholar 

  • Worrell GA, Cranstoun SD, Echauz J, Litt B (2002) Evidence for self-organized criticality in human epileptic hippocampus. Neuroreport 13:2017–2021

    Article  Google Scholar 

  • Yang H, Shew WL, Roy R, Plenz D (2012) Maximal variability of phase synchrony in cortical networks with neuronal avalanches. J Neurosci 32:1061–1072

    Article  CAS  Google Scholar 

  • Yu S, Klaus A, Yang H, Plenz D (2014) Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions. PLoS One 9:e99761

    Article  Google Scholar 

  • Yu S, Ribeiro TL, Meisel C, Chou S, Mitz A, Saunders R, Plenz D (2017) Maintained avalanche dynamics during task-induced changes of neuronal activity in nonhuman primates. elife 6:e27119

    Article  Google Scholar 

  • Zhao X, Chen T (2002) Type of self-organized criticality model based on neural networks. Phys Rev E 65:026114

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIMH ZIAMH002797 (Plenz) and by National Science Foundation CRCNS grant #1308174 (Shew) and by Arkansas Biosciences Institute grants 0055 and 0070 (Shew). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Plenz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Plenz, D., Shew, W. (2018). Neuronal Avalanches. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_743-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_743-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Neuronal Avalanches
    Published:
    03 September 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_743-4

  2. Original

    Neuronal Avalanches
    Published:
    08 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_743-3