Skip to main content

Neuronal Avalanches

  • 197 Accesses

Synonyms

Power-law neuronal assembly size distribution; Power-law neuronal burst size distribution; Power-law neuronal cascade size distribution

Definition

A dataset comprised of many population-level neural “events” is defined to be neuronal avalanches only if the probability distribution P(s) of event sizes s takes the functional form of a power-law P (s) ~ s −α, with exponent 1 < α < 2.

Detailed Description

Neuronal avalanches is a term used to describe a specific statistical character of spatiotemporal, population-level neuronal dynamics. Being a relatively young concept, introduced in 2003 (Beggs and Plenz 2003), a precise definition of neuronal avalanches is elusive with different authors adopting similar but nonidentical uses of the term. Nonetheless, there is consensus on certain defining aspects of neuronal avalanches, which may be distinguished from those which remain flexible and debated. In the following, we will first attempt to clarify the definitive and ambiguous...

This is a preview of subscription content, log in via an institution.

References

  • Beggs JM (2008) The criticality hypothesis: How local cortical networks might optimize information processing. Philos Transact A Math Phys Eng Sci 366:329–343

    Article  Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    PubMed  CAS  Google Scholar 

  • Benayoun M, Cowan JD, Van Drongelen W, Wallace E (2010) Avalanches in a stochastic model of spiking neurons. PLoS Comput Biol 6:e1000846

    Article  PubMed  PubMed Central  Google Scholar 

  • Buice MA, Cowan JD (2009) Statistical mechanics of the neocortex. Prog Biophys Mol Biol 99:53–86

    Article  PubMed  Google Scholar 

  • Chen D, Wu S, Guo A, Yang Z (1995) Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons. J Phys A Math Gen 28:5177–5182

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Review 51:661–703

    Article  Google Scholar 

  • de Arcangelis L, Perrone-Capano C, Herrmann H (2006) Self-organized criticality model for brain plasticity. Phys Rev Lett 96:1–4

    Article  Google Scholar 

  • Dehghani N, Hatsopoulos NG, Haga ZD, Parker RA, Greger B, Halgren E, Cash SS, Destexhe A (2012) Avalanche analysis from multielectrode ensemble recordings in cat, monkey, and human cerebral cortex during wakefulness and sleep. Frontiers in Physiology 3:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Estebanez L, El Boustani S, Destexhe A, Shulz DE (2012) Correlated input reveals coexisting coding schemes in a sensory cortex. Nat Neurosci 15:1691–1699

    Article  PubMed  CAS  Google Scholar 

  • Friedman N, Ito S, Brinkman B, Shimono M, DeVille REL, Dahmen KA, Beggs JM, Butler TC (2012) Universal critical dynamics in high resolution neuronal avalanche data. Phys Rev Lett 108:1–5

    Article  Google Scholar 

  • Gireesh E, Plenz D (2008) Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc Natl Acad Sci USA 105:7576–7581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hahn G, Petermann T, Havenith MN, Yu S, Singer W, Plenz D, Nikolic D (2010) Neuronal avalanches in spontaneous activity in vivo. J Neurophysiol 104(6):3312–3322

    Article  PubMed  PubMed Central  Google Scholar 

  • Haldeman C, Beggs JM (2005) Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys Rev Lett 94(5):058101

    Article  PubMed  Google Scholar 

  • Harris TE (1963) The theory of branching processes. Springer, Berlin

    Book  Google Scholar 

  • Kello CT (2013) Critical branching neural networks. Psychological Review 120:230–254

    Article  PubMed  Google Scholar 

  • Klaus A, Yu S, Plenz D (2011) Statistical analyses support power law distributions found in neuronal avalanches. PLoS One 6:e19779

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Larremore DB, Carpenter MY, Ott E, Restrepo JG (2012) Statistical properties of avalanches in networks. Phys Rev E 85:066131

    Article  Google Scholar 

  • Levina A, Herrmann JM, Geisel T (2007) Dynamical synapses causing self-organized criticality in neural networks. Nat Phys 3:857–860

    Article  CAS  Google Scholar 

  • Mazzoni A, Broccard FD, Garcia-Perez E, Bonifazi P, Ruaro ME, Torre V (2007) On the dynamics of the spontaneous activity in neuronal networks. PLoS One 2:e439

    Article  PubMed  PubMed Central  Google Scholar 

  • Meisel C, Gross T (2009) Adaptive self-organization in a realistic neural network model. Phys Rev E 80:1–6

    Article  Google Scholar 

  • Millman D, Mihalas S, Kirkwood A, Niebur E (2010) Self-organized criticality occurs in non-conservative neuronal networks during “up” states. Nat Phys 6:801–805

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Milton JG (2012) Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur J Neurosci 36:2156–2163

    Article  PubMed  Google Scholar 

  • Muñoz M, Dickman R, Vespignani A, Zapperi S (1999) Avalanche and spreading exponents in systems with absorbing states. Phys Rev E 59:6175–6179

    Article  Google Scholar 

  • Osorio I, Frei MG, Sornette D, Milton J, Lai YC (2010) Epileptic seizures: Quakes of the brain? Phys Rev E 82:021919

    Article  Google Scholar 

  • Palva JM, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K, Palva S (2013) Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc Natl Acad Sci USA 110:3585–3590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S (2008) Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neurosci 153:1354–69

    Article  CAS  Google Scholar 

  • Petermann T, Thiagarajan TC, Lebedev MA, Nicolelisb MAL, Chialvoc DR, Plenza D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci USA 106:15921–15926

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poil S-S, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K (2012) Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J Neurosci 32:9817–9823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Priesemann V, Valderrama M, Wibral M, Le Van QM (2013) Neuronal avalanches differ from wakefulness to deep sleep: Evidence from intracranial depth recordings in humans. PLoS Comput Biol 9:e1002985

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ribeiro TL, Copelli M, Caixeta F, Belchior H, Chialvo DR, Nicolelis MAL, Ribeiro S (2010) Spike avalanches exhibit universal dynamics across the sleep-wake cycle. PLoS ONE 5:e14129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rubinov M, Sporns O, Thivierge J-P, Breakspear M (2011) Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput Biol 7:e1002038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shew WL, Plenz D (2012) The functional benefits of criticality in the cortex. Neuroscientist 19(1):88–100

    Article  PubMed  Google Scholar 

  • Shew WL, Yang H, Petermann T, Roy R, Plenz D (2009) Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J Neurosci 29:15595–15600

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shew WL, Yang H, Yu S, Roy R, Plenz D (2011) Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J Neurosci 31:55–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shin C-W, Kim S (2006) Self-organized criticality and scale-free properties in emergent functional neural networks. Phys Rev E 74:1–4

    Article  Google Scholar 

  • Shriki O, Alstott J, Carver F, Holroyd T, Henson RNA, Smith ML, Coppola R, Bullmore E, Plenz D (2013) Neuronal avalanches in the resting MEG of the human brain. J Neurosci 33:7079–7090

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stewart CV, Plenz D (2006) Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. J Neurosci 26:8148–159

    Article  PubMed  CAS  Google Scholar 

  • Stewart CV, Plenz D (2008) Homeostasis of neuronal avalanches during postnatal cortex development in vitro. J Neurosci Methods 169:405–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2012) Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Frontiers in physiology 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Kaneko T, Aoyagi T (2009) Recurrent infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity. Neural Comput 21:1038–67

    Article  PubMed  Google Scholar 

  • Tetzlaff C, Okujeni S, Egert U, Wörgötter F, Butz M (2010) Self-organized criticality in developing neuronal networks. PLoS Comput Biol 6:e1001013

    Article  PubMed  PubMed Central  Google Scholar 

  • Touboul J, Destexhe A (2010) Can power-law scaling and neuronal avalanches arise from stochastic dynamics? PLoS One 5:e8982

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SJ, Zhou C (2012) Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks. New Journal of Physics 14:023005

    Article  Google Scholar 

  • Yang H, Shew WL, Roy R, Plenz D (2012) Maximal variability of phase synchrony in cortical networks with neuronal avalanches. J Neurosci 32:1061–1072

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao X, Chen T (2002) Type of self-organized criticality model based on neural networks. Phys Rev E 65:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woodrow Shew Ph. D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Shew, W. (2013). Neuronal Avalanches. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_743-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_743-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Neuronal Avalanches
    Published:
    03 September 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_743-4

  2. Original

    Neuronal Avalanches
    Published:
    08 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_743-3