Skip to main content

Biaxial s-Si Technology

  • Chapter
  • First Online:
Fundamentals of Nanoscaled Field Effect Transistors
  • 1691 Accesses

Abstract

Biaxial s-Si technology is perceived to be the alternate for the conventional MOS technology at the nanoscale. This is due to the enhanced performance of the biaxial s-Si technology. This chapter gives the review of biaxial s-Si technology. Some of the existing biaxial structures have been reviewed here. The main structures under biaxial category are relaxed SiGe, graded SiGe, SSOI, SGOI and other various hetero-structures help in providing improved performance. Some case studies of analytical modeling of carrier mobility and other relevant parameters are also given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The text/figures/equations/references etc. have been republished/reorganized from the paper [135], Amit Chaudhry, J.N. Roy and Garima Joshi, “Nanoscale Strained- Si MOSFET Physics and Modeling Approaches: A Review”, Journal of Semiconductors, Vol.31, No.10, pp.400-1–400-6, 2010 with due permission from the publisher.

  2. 2.

    The text/figures/equations/references etc. have been republished/reorganized from the paper [137], Amit Chaudhry, Garima Joshi, J.N. Roy and D.N. Singh, “Strained Silicon MOSFET Structures for Nanoscale Applications: A Review”, Acta Technica Napocensis - Electronică şi Telecomunicaţii, Vol.51, No.3, 2010, pp.15–22 with due permission from the publisher.

  3. 3.

    The text/figures/equations/references etc. associated with [156] have been reorganized/republished from the paper [156] Amit Chaudhry, S. Sangwan and Jatindra Nath Roy, “Mobility Models for Unstrained and Strained Silicon MOSFETs: A Review”, Contemporary Engineering Sciences, Vol. 4, No. 5, pp.229–247, 2011 with due permission from the publisher.

  4. 4.

    The text/figures/equations/references etc. associated with [194] have been republished/reorganized from the paper [194] Amit Chaudhry, J.N. Roy and S. Sangwan, “A SPICE Compatible Analytical Electron Mobility Model for Biaxial Strained-Si-MOSFETs”, Journal of Semiconductors, Vol. 32, No. 5, pp.1–6, 2011 with due permission from the publisher.

  5. 5.

    The text/figures/equations/references etc. associated with [197] have been republished/reorganized from the paper [197]Amit Chaudhry, S. Sangwan and Jatindra Nath Roy, “Analytical Modeling of Threshold Voltage for a Biaxial Strained-Si-MOSFET”, Contemporary Engineering Sciences, Vol. 4, No. 6, pp.249–258, 2011 with due permission from the publisher

  6. 6.

    The equations, figures etc. associated with [206] have been republished/reorganized from the paper [206], Amit Chaudhry and Sonu Sangwan, “An Analytical Hole Mobility Model for Biaxial Strained-Si-p-MOSFET”, Journal of Computational and Theoretical Nanoscience, Vol. 10, No.5, pp.1–6, 2013 with due permission from the publisher.

References

  1. Mistry K, Armstrong M, Auth C, Cea S, Coan T, Ghani T, Hoffmann T, Murthy A, Shaheed R, Zawadzki K, Zhang K, Thompson S, Bohr M (2004) Delaying forever: uniaxial strained silicon transistors in a 90 nm CMOS technology, Symposium on VLSI technology digest of technical papers, pp 50–51

    Google Scholar 

  2. Lee Minjoo L, Fitzgerald Eugene A, Bulsara Mayank T, Currie Matthew T, Anthony Lochtefeld (2005) Strained Si, SiGe, and Ge channels for high mobility metal oxide field effect transistors J Appl Phys, (97)

    Google Scholar 

  3. Ghani T, Armstrong M, Auth C, Bost M, Charvat P, Glass G, Hoffmann T, Johnson K, Kenyon C, Klaus J, McIntyre B, Mistry K, Murthy A, Sandford J, Silberstein M, Sivakumar S, Smith P, Zawadzki K, Thompson S, Bohr M (2003) A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. Technical digest of the IEEE international electron devices meeting, Washington, pp 978–980

    Google Scholar 

  4. Reiche M, Moutanabbir O, Hoentschel J, Gösele U, Flachowsky S, Horstmann M (2010) Strained silicon devices. Sol St Phen 156–158:61–68

    Google Scholar 

  5. Verdonckt Vanderbroek S, Crabbe F, Meyerson BS, Harame DL, Restle PJ, Stork JMC, Johnson JB (1994) SiGe channel heterojunction p MOSFET’s. IEEE T Electron Dev 41(1):90–101

    Article  Google Scholar 

  6. Chaudhry A, Roy JN, Joshi G (2010) Nanoscale strained- Si MOSFET physics and modeling approaches: a review. J Semiconduct 31(10):400-1–400-6

    Google Scholar 

  7. Cressler JD, Niu G (2003) Silicon Germanium heterojunction bipolar transistors. Artech House, Boston

    Google Scholar 

  8. Chaudhry A, Joshi G, Roy JN, Singh DN (2010) Strained silicon MOSFET structures for nanoscale applications: a review. Acta Tech Napocensis – Electron şi Telecomunicaţii 51(3):15–22

    Google Scholar 

  9. Qi Xiang (2005) Strained silicon MOSFET having improved carrier mobility, strained silicon CMOS device, and methods of their formation, Advanced Micro Devices, Feb 2005 (Patent)

    Google Scholar 

  10. Rim K, Chan K, Shi L, Boyd D, Ott J, Klymko N (2003) Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs, IEDM Technical Digest pp 49–52

    Google Scholar 

  11. Gomez L et al (2009) Enhanced hole transport in short-channel strained-SiGe p-MOSFETs. IEEE T Electron Dev 56(11):2644–2651

    Article  Google Scholar 

  12. Christiansena SH (2008) Strained silicon on insulator (SSOI) by waferbonding, Solid-St Electron, 498–505

    Google Scholar 

  13. Olsen SH et al (2003) Impact of virtual substrate growth on high performance strained Si/SiGe double quantum well metal-oxide-semiconductor field-effect transistors. J Appl Phys 94(10):6855–6863

    Article  Google Scholar 

  14. Qi Xiang, Jung-Suk Goo, Pan James N (2006) Strained silicon semiconductor on insulator MOSFET, Assignee: advanced micro devices, Sunnyvale Patent no. US 7,033,869 dated 25.04.06

    Google Scholar 

  15. Olsen SH, O’Neill AG, Driscoll LS, Kwa KSK, Chattopadhyay S, Waite AM, Tang YT, Evans AGR, Norris DJ, Cullis AG, Paul DJ, Robbins DJ (2003) High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture. IEEE T Electron Dev 50:1961–1969

    Article  Google Scholar 

  16. Olsen SH, Neill AGO, Driscoll LS, Chattopadhyay S, Kelvin S, Kwa K, Waite AM, Tang YT, Evans GR, Zhang J (2004) Optimization of alloy composition for high-performance strained-Si-SiGe n-channel MOSFETs. IEEE T Electron Dev 51(7):1156–1162

    Article  Google Scholar 

  17. Yee Chia Yee Yee Chia Yee, Subramanian V, Kedzierski J, Peiqi Xuan Peiqi Xuan, Tsu-Jae King Tsu-Jae King, Bokor J, Chenming Hu Chenming Hu (2006) Nanoscale ultra-thin-body silicon-on-insulator P-MOSFET with a SiGe/Si heterostructure channel, IEEE Electron Devic Lett, 21(4)

    Google Scholar 

  18. Weimin Zhang, Fossum Jerry G (2005) On the threshold voltage of strained-Si–Si1-xGex MOSFETs, IEEE T Electron Dev, 52(2)

    Google Scholar 

  19. Shinichi Takagi (2008) Understanding and engineering of carrier transport in advanced MOS channels, IEEE international conference on Simulation of Semiconductor Processes and Devices

    Google Scholar 

  20. Lee ML, Fitzgerald EA (2003) Optimized strained Si/strained Ge dual channel heterostructures for high mobility p- and n-MOSFETs, Int Electron Dev Meet, pp 18.1–4

    Google Scholar 

  21. Mizuno T et al (1999) High performance strained-Si p-MOSFETs on SiGe-on-insulator substrates fabricated by SIMOX technology, Int Electron Dev Meet, 934–937

    Google Scholar 

  22. Huang Member, Kirsch Paul D, Jungwoo, Se Hoon Lee, Prashant Majhi, Rusty Harris H, Gilmer Daivd C, Gennadi Bersuker, Dawei Heh, Chang Seo Park, Chanro Park, Hsing-Huang Tseng, Fellow, Raj Jammy (2009) Mechanisms limiting EOT scaling and gate leakage currents of high-k/Metal gate stacks directly on SiGe IEEE Electron Devic Lett, 30(3)

    Google Scholar 

  23. Dalapati GK, Chattopadhyay S, Kwa KSK, Olsen SH, Tsang YL, Agaiby R, O’Neill AG, Dobrosz P, Bull SJ (2006) Impact of strained- Si thickness and Ge out-diffusion on gate oxide quality for strained-Si surface channel n-MOSFETs. IEEE T Electron Dev 53(5):1142–1152

    Article  Google Scholar 

  24. Chan et al (2010) Strained silicon CMOS on hybrid crystal orientations, United States Patent 7691688

    Google Scholar 

  25. Yamaguchi K (1979) Field-dependent mobility model for two-dimensional numerical analysis; of MOSFET’s. IEEE T Electron Dev ED-26(7):1068–1074

    Article  Google Scholar 

  26. Chaudhry A, Sangwan S, Roy JN (2011) Mobility models for unstrained and strained silicon MOSFETs: a review. Contemp Eng Sci 4(5):229–247

    Google Scholar 

  27. Fang FF, Fowler AB (1968) Transport properties of electrons in inverted silicon surface. Phys Rev 169:619–631

    Article  Google Scholar 

  28. Nishida T, Sah C-T (1987) Physically based mobility model for MOSFET numerical simulation. IEEE T Electron Dev ED-34(2):310–320

    Article  Google Scholar 

  29. Donetti L, Gamiz F, Rodriguez N (2009) Simulation of hole mobility in two-dimensional systems. Semiconduct Sci Technol 24:035016–22

    Article  Google Scholar 

  30. Takagi S-i, Toriumi A, Iwase M, Tango H (1994) On the universality of inversion layer mobility in Si MOSFET's: part I-effects of substrate impurity concentration. IEEE T Electron Dev 41(12):2357–2362

    Article  Google Scholar 

  31. Mansour IRM, Talkhan EA, Barboor AI (1972) Investigations on the effect of drift-field-dependent mobility on MOST-Part I: QB constant. IEEE T Electron Dev ED 19(8):899–907

    Article  Google Scholar 

  32. Talkhan EA, Mansour IRM, Barbour AI (1972) Investigations on the effect of drift-field-dependent mobility on MOST-Part II: QB field dependent. IEEE T Electron Dev ED 19(8):908–916

    Article  Google Scholar 

  33. Caughey DM, Thomas RE (1967) Carrier mobilities in silicon empirically related to doping and field. P IEEE 55(12):2192–2193

    Article  Google Scholar 

  34. Sun SC, Plummer JD (1980) Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces. IEEE T Electron Dev ED-29:1497–1508

    Article  Google Scholar 

  35. Schwarz SA, Russek SE (1983) Semi-empirical equations for electron velocity in si1icon: part 1-MOS inversion layer. IEEE T Electron Dev ED-29:1629–1633

    Article  Google Scholar 

  36. Schwarz SA, Russek SE (1983) Semi-empirical equations for electron velocity in si1icon: part 11-MOS inversion layer. IEEE T Electron Dev ED-29:1634–1639

    Article  Google Scholar 

  37. Walker AJ, Woerlee PH (1988) A mobility model for MOSFET device simulation. In: proceedings of European Solid-State Devices Research Conference (ESSDERC), pp 265–268

    Google Scholar 

  38. Lombardi C, Manzini S, Saporito A, Vanzi M (1988) A physically based mobility model for numerica simulation of nonplanar devices. IEEE T Comput Aid D 7(11):1164–1171

    Article  Google Scholar 

  39. Jeon DS, Burk DE (1989) MOSFET, Electron inversion layer mobilities -a physically based semi-empirical model for a wide temperature range. IEEE T Electron Dev 36(8):1456–1463

    Article  Google Scholar 

  40. Shin H, Yeric GM, Tasch AF, Maziar CM (1991) Physically-based models for effective mobility and local-field mobility of electrons in MOS inversion layers. Solid State Electron 34(6):545–552

    Article  Google Scholar 

  41. Yue C, Martin Agostinelli V, Yerk GM, Tasch AaF (1993) Improved universal MOSFET electron mobility degradation models for circuit simulation. IEEE T Comput Aid D 12(10):1542–1546

    Article  Google Scholar 

  42. Huang CL, Gildenblat GS (1990) Measurements and modeling of the n-channel MOSFET inversion layer mobility and device characteristics in the temperature range 60–300 K. IEEE T Electron Dev 37:1289–1300

    Article  Google Scholar 

  43. Watt JT, Plummer JD (1987) Universal mobility-field curves for electrons and holes in MOS inversion layers, Symposium on VLSI Tech. digest, pp 81–82

    Google Scholar 

  44. Sabnis AG, Clemens JT (1979) Characterization of the electron mobility in the inverted (100) Si substrate. IEEE IEDM Tech D 25:18–21

    Google Scholar 

  45. Huang C-L, Arora ND (1994) Characterization and modeling of the n- and p-channel MOSFETs inversion-layer mobility in the range 25–125 °C. Solid State Electron 37(1):97–103

    Article  Google Scholar 

  46. Cheng, Woo J, (1996) Measurement and modeling of the n-channel and p-channel MOSFET's inversion layer mobility at room and low temperature operation, Colloque 3, suppl Bment au Journal de Physique 111, 6

    Google Scholar 

  47. Watt JT (1989) Modeling the performance of liquid-nitrogen cooled CMOS VLSI, Stanford Elect. Lab. Tech. Rep., no. G725-3

    Google Scholar 

  48. Kai Chen H, Wann C, Dunster J, KO PK, Hu C, Yashida M (1996) MOSFET carrier mobility model based on oxide thickness, threshold and gate voltage. Solid State Electron 39(10):1515–1518

    Article  Google Scholar 

  49. Chain K, Huang J-h, Duster J, KO PK, Hu C (1997) A MOSFET electron mobility model of wide temperature range (77–400 K) for IC simulation. Semiconduct Sci Technol 12:355–358

    Article  Google Scholar 

  50. Lim KY, Zhou X (2001) A physically-based semi-empirical effective mobility model for MOSFET compact I-V modeling. Solid State Electron 45:193–197

    Article  Google Scholar 

  51. Remashan K, Wong NA, Chan K, Sim SP, Yang CY (2002) Modeling inversion layer carrier mobilities in all regions of MOSFET operations. Solid State Electron 46:153–156

    Article  Google Scholar 

  52. Chen K, Wann HC, Ko PK, Hu C (1996) The impact of device scaling and power change on CMOS gate performance. IEEE Electron Devic Lett 17(5):202–204

    Article  Google Scholar 

  53. Suetake M, Suematsu K, Nagakura H, Miura-Mattausch M, Mattausch HJ (2000) HiSIM: a drift-diffusion-based advanced MOSFET model for circuit simulation with easy parameter extraction, SISPAD, pp 261–264

    Google Scholar 

  54. Klaassen DBM (1992) A unified mobility model for device simulation-1. Model equations and concentration dependence. Solid State Electron 15(7):953–959

    Article  Google Scholar 

  55. Villa S, Lacaita L, Perron LM, Bez R (1998) A physically-based model of the effective mobility in heavily-doped n-MOSFETs. IEEE T Electron Dev 45:110–115

    Article  Google Scholar 

  56. Rodriguez N, Rolden JB, Gamiz F (2007) An electron mobility model for ultra-thin gate-oxide MOSFETs including the effect of temote scattering mechanism. Semiconduct Sci Technol 22:348–353

    Article  Google Scholar 

  57. Bhuyan MH, Khosru QDM (2011) Inversion layer effective mobility model for pocket implanted nano scale n-MOSFET. Int J Elec Electron Eng 5(1):50–57

    Google Scholar 

  58. Kastalsky AA, Shur MS (1981) Conductance of small semiconductor devices. Solid-State Commun 39(6):715–718

    Article  Google Scholar 

  59. Lee K, Shur MS (1983) Impedance of thin semiconductor films. J Appl Phys 54(7):4028–4034

    Article  Google Scholar 

  60. Dyakonov M, Shur MS (1996) The physics of semiconductors World Scientific

    Google Scholar 

  61. Roldán JB, Gámiz F, Cartujo-Cassinello P, Cartujo P, Carceller JE, Roldan A (2003) Strained-Si on Si1-xGexMOSFET mobility model. IEEE T Electron Dev 50(5):1408–1411

    Article  Google Scholar 

  62. Yang Z, Dawei Z, Lilin T (2004) An improved strained-Si on Si1-xGex MOSFET mobility model. IEEE 2:1216–1219

    Google Scholar 

  63. Nahfeh H, Hoyt JL, Antoniadis DA (2004) A physically based analytical model for the threshold voltage of strained-Si n-MOSFETs. IEEE T Electron Dev 51(12):2069–2072

    Article  Google Scholar 

  64. Chaudhry A, Roy JN, Sangwan S (2011) A SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs. J Semiconduct 32(5):1–6

    Google Scholar 

  65. Roldán JB, Gámiz F, Cartujo-Cassinello P, Cartujo P, Carceller JE, Roldan A (2003) Strained-Si on SiGe MOSFET mobility model. IEEE T Electron Dev 50(5):1408–1411

    Article  Google Scholar 

  66. Nayfeh HM et al (2004) A physically based analytical model for the threshold voltage of strained-Si n-mosfets. IEEE T Electron Dev 51(12):2069–2072

    Article  Google Scholar 

  67. Chaudhry A, Sangwan S, Roy JN (2011) Analytical modeling of threshold voltage for a biaxial strained-Si-MOSFET. Contemp Eng Sci 4(6):249–258

    Google Scholar 

  68. Pham AT, Jungemann C, Nguyen CD, Meinerzhagen B (2006) A semiempirical surface scattering model for quantum corrected Monte-Carlo simulation of unstrained Si and strained Si/SiGe p-channel MOSFETs. Mat Sci Eng B 135:224–227

    Article  Google Scholar 

  69. Sun G, Sun Y, Nishida T, Thompson SE (2007) Hole mobility in silicon inversion layers: stress and surface orientation. J Appl Phys 102:084501–7

    Article  Google Scholar 

  70. Zhang Y, Fischetti MV, Sorée W, Magnus MH, Meuris M (2009) Physical modeling of strain-dependent hole mobility in Ge p-channel inversion layers. J Appl Phys 106:083704-1–9

    Google Scholar 

  71. Yi Zhao, Mitsuru Takenaka, Shinichi Takagi (2008) Comprehensive understanding of surface roughness and Coulomb scattering mobility in biaxially-strained Si MOSFETs International Electron Devices Meeting (IEDM), pp 1–4, Dec 2008, San Francisco

    Google Scholar 

  72. Leitz CW, Currie MT, Lee ML, Cheng Z-Y, Antoniadis DA, Fitzgerald EA (2002) Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal–oxide–semiconductor field-effect transistors. J Appl Phys 92(7):3745–3751

    Article  Google Scholar 

  73. Lee M, Fitzgerald E (2003) Hole mobility enhancements in nanometer-scale strained-silicon hetero-structures grown on Ge-rich relaxed Si1-xGex. J Appl Phys 94(4):2590–2596

    Article  Google Scholar 

  74. Rim K, Welser J, Hoyt JL, Gibbons JF (1995) Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs International Electron Devices Meeting (IEDM), 517–520, Dec 1995, USA

    Google Scholar 

  75. Maiti Ck, Bera LK, Dey S, Nayak K, Chakrabarty NB (1997) Hole mobility enhancement in strained-si p-MOSFETs under high vertical field. Solid State Electron 41(12):1863–1869

    Article  Google Scholar 

  76. Chaudhry A, Sangwan S (2013) An analytical hole mobility model for biaxial strained-Si-p-MOSFET. J Comput Theor Nanoscience 10(5):1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhry, A. (2013). Biaxial s-Si Technology. In: Fundamentals of Nanoscaled Field Effect Transistors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6822-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6822-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6821-9

  • Online ISBN: 978-1-4614-6822-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics