Skip to main content
  • 1705 Accesses

Abstract

As the technology is progressing towards nanoscale, the limitations of Si are becoming prominent. So, there is an urgent need to search the alternate materials for the substrate such as Ge which can perform better than Si mainly in the area of enhanced carrier mobility. In this chapter, a review of Ge technology has been done keeping in view the advantages and disadvantages posed by this material. The performance of Ge MOSFETs in the presence of QMEs has also been discussed and some Ge-MOSFET structures with alternate dielectrics have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The text/figures/equations/references, etc., associated with [124] have been republished/reorganized from the paper [124] Amit Chaudhry and J.N. Roy, “Analytical Modeling of Quantum Mechanical Tunneling in Germanium nano-MOSFETs”, Journal of Electronic Science and Technology, Vol.8, No.2, pp.144–148, 2010, with due permission from the publisher.

References

  1. Pregaldiny F, Lallement C, Grabinski W, Kammerer JB, Mathiot D (2003) An analytical quantum model for the surface potential of deep sub micron MOSFETs, 10th international conference on Mixed Design Integrated Circuits and Systems (MIXDES’03), June 2003

    Google Scholar 

  2. Miura- Mattausch M, Ueno H, Mattausch HJ, Kumashiro S, Tamaguchi T, Nakatama N (2002) HiSIM: self -consistent surface – potential MOS model valid down to sub-100 nm technologies, MSM workshop, April 2002

    Google Scholar 

  3. Chaudhry A, Roy JN (2011) Analytical modeling of gate oxide leakage tunneling current in a MOSFET: a quantum mechanical study. Micro-Nano-Electron Technol 48(6):357–364

    Google Scholar 

  4. Stern F (1972) Self-consistent results for n-type Si inversion layers. Phys Rev B 5:4891–4899

    Article  Google Scholar 

  5. Chaudhry A, Roy JN (2012) Analytical modeling of energy quantization effects in nanoscale MOSFETs. Int J Nanoelectronics Mater 5(1):1–9

    Google Scholar 

  6. Sun Y, Thompson SE, Nishida T (2007) Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J Appl Phys 101:104503–22

    Article  Google Scholar 

  7. Gang Du, Xiaoyan Liu, Zhiliang Xia, Jinfeng Kang, Yi Wang, Ruqi Han, HongYu Yu, Dim-Lee Kwong (2005) Monte Carlo simulation of p- and n-channel GOI MOSFETs by solving the Quantum Boltzmann equation, IEEE T Electron Dev, 52(10): 2258–2264

    Google Scholar 

  8. Vita Pi-Ho Hu, Yu-Sheng Wu, Pin Su (2008) Investigation of electrostatic integrity for ultra-thin-body GeOI MOSFET using analytical solution of Poisson’s equation, IEEE international conference on Electron Devices and Solid-State Circuits, pp 1–4

    Google Scholar 

  9. Zhiliang Xia, Gang Du, Xiaoyan Liu, Jinfeng Kang, Ruqi Han (2006) Effect of interface roughness on the carrier transport in Ge MOSFETs investigated by Monte Carlo method, 8th international conference on Solid-State and Integrated Circuit Technology, pp 152–154

    Google Scholar 

  10. Yu-Sheng Wu, Hsin-Yuan Hsieh, Vita Pi-Ho Hu, Pin Su (2011) Impact of quantum confinement on short-channel effects for ultrathin-body Germanium-on-Insulator MOSFETs, IEEE Electron Devic Lett, 32(1): 18–20

    Google Scholar 

  11. Tsuchiya H, Fujii K, Mori T, Azuma Y, Okuda K, Miyoshi T (2007) On the performance limits of emerging Nano-MOS transistors: a simulation study, 7th IEEE conference on Nanotechnology, pp 530–535

    Google Scholar 

  12. Zhiliang Xia, Gang Du, Xiaoyan Liu, Jinfeng Kang, Ruqi Han (2006) Effect of surface roughness on Quasi-Ballistic transport in Nano-Scale Ge and Si Double-Gate MOSFETs, 8th international conference on Solid-State and Integrated Circuit Technology, pp 152–154

    Google Scholar 

  13. Tsormpatzoglou A, Dimitriadis CA, Clerc R, Rafhay Q, Pananakakis G, Ghibaudo G Semi-Analytical modeling of short-channel effects in Si and Ge symmetrical double-gate MOSFETs, IEEE T Electron Dev, 54(8): 1943–1952

    Google Scholar 

  14. Ghosh B, Fan X-F, Register LF, Banerjee SK,(2006) Monte Carlo study of remote Coulomb and remote surface roughness scattering in nanoscale Ge p channel MOSFETs with ultrathin high-κ dielectrics, International conference on Simulation of Semiconductor Processes and Devices, pp 170–172

    Google Scholar 

  15. Chin A, Kao HL, Tseng YY, Yu DS, Chen CC, McAlister SP, Chi CC, (2005) Physics and modeling of Ge-on-insulator MOSFETs, Proceedings of 35th European solid-state device research conference, 285–288

    Google Scholar 

  16. Du Gang, Liu Xiao-Yan, Xia Zhi-Liang, Yang Jing-Feng, Han Ru-Qi (2010) Effect of interface roughness on the carrier transport in germanium MOSFETs investigated by Monte Carlo method Chinese Phys B, 19(5): 057304-1–6

    Google Scholar 

  17. Jian-Li Ma, He-Ming Zhang, Xiao-YanWang, QunWei, Guan-YuWang, Xiao-Bo Xu Valence band structure and hole effective mass of uniaxial stressed Germanium, J Comp Electron, DOI 10.1007/s10825-011-0374-7

  18. Ghosh B, Fan X-F, Register LF, Banerjee SK (2006) Monte Carlo study of strained Germanium Nanoscale Bulk pMOSFETs. IEEE T Electron Dev 53(3):533–537

    Article  Google Scholar 

  19. Conzatti F, Toniutti P, Esseni D, Palestri P, Selmi L (2010) Simulation study of the on-current improvements in Ge and sGe versus Si and sSi nano-MOSFETs, Int Electron Dev Meet, pp 15.2.1–4

    Google Scholar 

  20. Diouf C, Cros A, Monfray S, Mitard J, Rosa J, Boeuf F, Ghibaudo G (2011) Transport characterisation of Ge p-MOSFETs in saturation regime, Proceedings of the European IEEE Solid-State Device Research Conference (ESSDERC ), pp 223–226

    Google Scholar 

  21. Hideaki Tsuchiya, Kazuya Fujii, Takashi Mori, Y_suke Azuma, Ky_suke Okuda, Tanroku Miyoshi, (2007) On the performance limits of emerging Nano-MOS transistors: a simulation study Proceedings of the 7th IEEE international conference on Nanotechnology, August 2007, Aug 2007 pp 530–535

    Google Scholar 

  22. Hideki Minari, Nobuya Mori (2009) Comparative study on Si and Ge p-type Nanowire FETs based on full-band non-equilibrium Green’s function simulation, IEEE international conference on Simulation of Semiconductor Processes and Devices, pp 1–4

    Google Scholar 

  23. Craig Riddet, Jeremy R Watling, Kah-Hou Chan, Evan HC Parker, Terence E Whall, David R Leadley, Asen Asenov Hole mobility in Germanium as a function of substrate and channel orientation, strain, doping, and temperature, IEEE T Electron Dev, DOI 10.1109/TED.2012.2194498

  24. Lubow A, Ismail-Beigi S, Ma TP (2010) Comparison of drive currents in metal-oxide-semiconductor field-effect transistors made of Si, Ge, GaAs, InGaAs, and InAs channels. Appl Phys Lett 96:122105-1–122105-3

    Article  Google Scholar 

  25. Chaudhry A, Roy JN (2010) Analytical modeling of quantum mechanical tunneling in Germanium nano-MOSFETs. J Electron Sci Technol 8(2):144–148

    Google Scholar 

  26. Low T et al (2003) Germanium MOS: an evaluation from carrier quantization and tunneling current, Symposium on VLSI technology, pp 117–118

    Google Scholar 

  27. Gareth Nicholas, Brunco David P, Dimoulas A, Jan Van Steenbergen, Florence Bellenger, Michel Houssa, Matty Caymax, Marc Meuris, Panayiotatos Y, Andreas Sotiropoulos, Germanium MOSFETs with CeO2/HfO2/TiN gate stacks IEEE T Electron Dev, 54(6): 1425–1430

    Google Scholar 

  28. Shang H, Lee K-L, Kozlowski P, D’Emic C, Babich I, Sikorski E, Ieong M, Wong H-SP, Guarini K, Haensch W (2004) Self-aligned n-channel Germanium MOSFETs with a thin Ge Oxynitride gate dielectric and Tungsten gate. IEEE Electron Devic Lett 25(3):135–137

    Article  Google Scholar 

  29. Gu JJ, Liu YQ, Xu M, Celler GK, Gordon RG, Ye PD (2010) High performance atomic-layer-deposited LaLuO3/Ge-on-insulator p-channel metal-oxide-semiconductor field-effect transistor with thermally grown GeO2 as interfacial passivation layer. Appl Phys Lett 97:012106–08

    Article  Google Scholar 

  30. Ritenour A, Hennessy J, Antoniadis DA (2007) Investigation of carrier transport in Germanium MOSFETs with WN/Al2O3/AlN gate stacks. IEEE Electron Devic Lett 28(8):746–749

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhry, A. (2013). Germanium Technology. In: Fundamentals of Nanoscaled Field Effect Transistors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6822-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6822-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6821-9

  • Online ISBN: 978-1-4614-6822-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics