Skip to main content

Nanoscale Effects: Gate Oxide Leakage Currents

  • Chapter
  • First Online:
Fundamentals of Nanoscaled Field Effect Transistors

Abstract

In this chapter, a review of gate oxide scaling problems, physics, and models in MOSFETs has been done. The modeling approach to gate tunneling used in several industry-standard compact MOS models has been presented. Some special cases of gate oxide tunneling have also been considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The text/figures/equations/references, etc., associated with [48] have been republished/reorganized from the paper [48], Amit Chaudhry and Jatindra Nath Roy, “Analytical Modeling of Gate Oxide leakage Tunneling Current in a MOSFET: A Quantum Mechanical Study”, Micro-nano-electronic Technology, Vol. 48, No. 6, pp.357–364, June, 2011 with due permission from the publisher.

  2. 2.

    The text/figures/equations/references, etc., associated with [53] have been republished/reorganized from the paper [53] Amit Chaudhry and Jatinder Nath Roy, “Gate Oxide Leakage in Poly-depleted Nanoscale-MOSFET: A Quantum Mechanical Study”, International Journal of Nanoelectronics and Materials, Vol. 4, No. 2, pp.93–100, 2011 with due permission from the publisher.

References

  1. Foty D (1997) MOSFET modeling with SPICE, principles and practice, Prentice Hall

    Google Scholar 

  2. Lee WC, Hu CM (2001) Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling. IEEE T Electron Dev 48(7):1366–1373

    Article  Google Scholar 

  3. He J et al (2007) BSIM 5: an advanced charge based MOSFET model for nanoscale VLSI circuit simulation. Solid State Electron 51:433–444

    Article  Google Scholar 

  4. Gildenblat G, Wang H, Chen TL, Gu X, Cai X (2004) SP: an advanced surface-potential-based compact MOSFET model. IEEE J Solid St Circ 39(9):1394–1406

    Article  Google Scholar 

  5. Miura- Mattausch M, Ueno H, Mattausch HJ, Kumashiro S, Tamaguchi T, Nakatama N (2002) HiSIM: self -consistent surface – potential MOS model valid down to sub-100 nm technologies, MSM workshop, April 2002

    Google Scholar 

  6. Ravindra NM, Jin Z (1992) Fowler- Nordhiem tunneling in thin SiO2 films. Smart Mater Struct 1:197–201

    Article  Google Scholar 

  7. Lezlinger M, Snow EH (1969) Fowler-Nordheim tunneling into thermally grown SiO2. J Appl Phys 40:278–283

    Article  Google Scholar 

  8. Rana F, Tiwari S, Buchanan DA (1996) Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides. Appl Phys Lett 69:1104–1106

    Article  Google Scholar 

  9. Lo SH, Buchanan DA, Taur Y, Wang W (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Devic Lett 18:209–211

    Article  Google Scholar 

  10. Shih W-K, Wang EX, Jallepalli S, Leon F, Maziar CM, Tasch AF Jr (1998) Modeling gate leakage current in nMOS structures due to tunnneling through an ultrathin oxide. Solid State Electron 42:997–1006

    Article  Google Scholar 

  11. Register LF, Roesenbaum E, Yang K (1999) Analytical model for direct tunneling current in poly Si-gate-metal-oxide-semiconductor devices. Appl Phys Lett 74:457–459

    Article  Google Scholar 

  12. Nian Yang W, Henson K, Hauser JR, Wortman JJ (1999) Modeling study of ultrathin gate oxide using direct tunneling current and capacitance-voltage measurements in MOS devices. IEEE T Electron Dev 46:292–294

    Google Scholar 

  13. Ghetti A (2000) Characterization of tunneling current in ultra-thin gate oxide. Solid State Electron 44:1523–1531

    Article  Google Scholar 

  14. Vogel EM, Ahmed KZ, Hornung B, Kriklen Henson W, Mclarty PK, Lucovsky G, Hauser JR, Wortman JJ (1998) Modeled tunnel currents for high dielectric constant dielectrics. IEEE T Electron Dev 45:1350–1355

    Article  Google Scholar 

  15. Sivakumar Mudanai, Yang-Yu Fan, Qiqing Ouyang, Tasch Al F, Sanjay Kumar Banerjee (2000) Modeling of direct tunneling current through gate dielectric stacks, IEEE T Electron Dev, 47: 1851–1857

    Google Scholar 

  16. Lee J (2002) Model and analysis of gate leakage current in Ultrathin Nitrided oxide MOSFETs. IEEE T Electron Dev 49(7):1232–1241

    Article  Google Scholar 

  17. Sheu C-J, Jang S-L (2000) A MOSFET gate current model with the direct tunneling mechanism. Solid State Electron 44(10):1819–1824

    Article  Google Scholar 

  18. Liu X, Kang J, Han R (2003) Direct tunneling current model for MOS devices with ultra-thin gate oxide including quantization effect and polysilicon depletion effect. Solid State Commun 125(3–4):219–223

    Article  Google Scholar 

  19. Cassan E, Galdin S, Dollfus P, Hesto P (1999) Analysis of electron energy distribution function in ultra-thin gate oxide n-MOSFETs using Monte Carlo simulation for direct tunneling gate current calculation. Phys B 272:550–553

    Article  Google Scholar 

  20. Grgec D (2002) Efficient Monte Carlo simulation of tunnel currents in MOS structures, Proceeding of the 32nd European solid-state device research conference, pp 24–26, pp 179–182

    Google Scholar 

  21. Cassan E (1999) Modeling of direct tunneling gate current in ultra-thin gate oxide MOSFETs: a comparison between simulators, International conference on Simulation of Semiconductor Processes and Devices, pp 115–118

    Google Scholar 

  22. Kajen RS, Chang KKF, Ping Bai, Erping Li (2007) Computation of direct tunneling gate leakage currents in nano-MOSFETs using ensemble full band Monte Carlo with quantum correction, 7th IEEE conference on Nanotechnology, pp 76–80

    Google Scholar 

  23. Kajen RS, Chang KKF, Ping Bai, Erping Li (2007) Gate leakage analysis of nano-MOSFETs using ensemble full band Monte Carlo with quantum correction, International symposium on integrated circuits, pp 135–138

    Google Scholar 

  24. Seonghoon Jin, Wettstein A, Woosung Choi, Bufler FM, Lyumkis E (2009) Gate current calculations using spherical harmonic expansion of Boltzmann equation, International conference on Simulation of Semiconductor Processes and Devices, pp 1–4

    Google Scholar 

  25. Clerc R, Spinelli A, Ghibaudo G, Pananakakis G (2002) Theory of direct tunneling current in metal-oxide-semiconductor structures. J Appl Phys 91(3):1400–1409

    Article  Google Scholar 

  26. Lo SH, Buchanan DA, Taur Y (1999) Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides. IBM J Res Dev 43(3):327–337

    Article  Google Scholar 

  27. Yang N, Henson WK, Hauser JR, Wortman JJ (1999) Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices. IEEE T Electron Dev 46(7):1464–1471

    Article  Google Scholar 

  28. Choi C-H, Dutton RW (2004) Gate tunneling current and quantum effects in deep scaled MOSFETs. J Semiconduct Tech Sci 4(1):27–31

    Google Scholar 

  29. BSIM 4 users manual www.device.eecs.berkeley.edu

  30. Philips MOS Model 11, www.nxp.com

  31. Holm R (1951) The electric tunnel effect across thin insulator films in contacts. J Appl Phys 22:569–574

    Article  MATH  Google Scholar 

  32. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  33. Chaudhry A, Roy JN (2011) Analytical modeling of gate oxide leakage tunneling current in a MOSFET: a quantum mechanical study. Micro-Nano-Electron Technol 48(6):357–364

    Google Scholar 

  34. Lo S (1997) Quantum –mechanical modeling of electron tunneling current from the inversion layer of ultra- thin – oxide nMOSFET’s. IEEE Electron Devic Lett 18(5):209–211

    Article  Google Scholar 

  35. Chiah S (2005) Single piece poly crystalline silicon accumulation/depletion/inversion model with implicit/explicit surface potential solutions. Appl Phys Lett 86:202111–1–202111–3

    Article  Google Scholar 

  36. Habas P (1992) Investigation of the physical modeling of the gate depletion effect. IEEE T Electron Dev 39(6):1496–1500

    Article  Google Scholar 

  37. Arora N et al (1995) Modeling the polysilicon depletion effect and its impact on sub micrometer CMOS circuit performance. IEEE T Electron Dev 42(5):935–942

    Article  Google Scholar 

  38. Chaudhry A, Roy JN (2011) Gate oxide leakage in poly-depleted nanoscale-MOSFET: a quantum mechanical study. Int J Nanoelectronics Mater 4(2):93–100

    Google Scholar 

  39. ChangHoon Choi, Chidambaram PR, Rajesh Khamankar, Machala Charles F, Zhiping Yu, Dutton Robert W (2002) Dopant profile and gate geometric effects on polysilicon gate depletion in scaled MOS, IEEE T Electron Dev, 49(7)

    Google Scholar 

  40. Calvet LE, Wheeler RG, Reed MA (2002) Electron transport measurements of Schottky barrier inhomogeneities. Appl Phys Lett 80(10):1761–1763

    Article  Google Scholar 

  41. Chang-Hoon Choi, Ki-Young Nam, Zhiping Yu, Dutton RW Impact of gate direct tunneling current on circuit performance: a simulation study, IEEE T Electron Dev 48(12): 2823–2829

    Google Scholar 

  42. Chen J-S, Ker M-D (2009) Impact of gate leakage on performances of phase-locked loop circuit in nanoscale CMOS technology. IEEE T Electron Dev 56(8):1774–1779

    Article  Google Scholar 

  43. Arumi D, Rodriguez-Montanes R, Figueras J, Eichenberger S, Hora C, Kruseman B (2011) Gate leakage impact on full open defects in interconnect lines. IEEE T VLSI Syst 19(12):2209–2220

    Article  Google Scholar 

  44. Narasimhulu K, Ramgopal Rao V (2006) Analog circuit performance issues with aggressively scaled gate oxide CMOS technologies, 19th international conference on VLSI Design, 2006. (Held jointly with 5th international conference on Embedded Systems and Design)

    Google Scholar 

  45. Chaves F, Jiménez D, Suñé J (2012) Explicit model for the gate tunneling current in double-gate MOSFETs. Solid State Electron 68:93–97

    Article  Google Scholar 

  46. Darbandy G, Ritzenthaler R, Lime F, Garduño I, Estrada M, Cerdeira A, Iñiguez B (2010) Analytical modeling of the gate tunneling leakage for the determination of adequate high-k dielectrics in double-gate SOI MOSFETs at the 22 nm node. Solid State Electron 54(10):1083–1087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhry, A. (2013). Nanoscale Effects: Gate Oxide Leakage Currents. In: Fundamentals of Nanoscaled Field Effect Transistors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6822-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6822-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6821-9

  • Online ISBN: 978-1-4614-6822-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics