Skip to main content

Autophagy and the Tumor Microenvironment

  • Chapter
  • First Online:
Autophagy and Cancer

Part of the book series: Current Cancer Research ((CUCR,volume 8))

  • 1984 Accesses

Abstract

Malignant cells do not act as separate entities; they exist in the context of an emergent microenvironment that they create in concert with the host over several years of intimate interaction. The tumor microenvironment (TME) is composed of inflammatory/immune cells, endothelial cells, fibroblasts, cytokines, chemokines, growth factors and the extracellular matrix. The TME has been implicated in the regulation of tumor initiation and progression, determining metastatic potential, and impacting the response to therapy. The TME is highly dynamic and contains subpopulations of cancer cells with temporally varying gradients of cellular metabolism, O2 content, pH, genomic stability and a propensity for aggressive behavior. The stressors present within the TME, include hypoxia, low nutrient availability, immune infiltrates, inflammatory factors and unscheduled cell death associated with release of endogenous damage associated molecular pattern (DAMP) molecules. DAMPs, including the chromatin-binding protein high mobility group box 1 (HMGB1), alert the host of tissue damage or injury by triggering immune responses and activating stress mechanisms such as autophagy through their interaction with pattern recognition receptors. Autophagy, a conserved lysosomal degradation pathway, is a cell maintenance program that is operative at basal levels in all cells, extinguishing during traversion of the cell cycle. It is invoked at higher levels as a survival mechanism in response to environmental and cellular stress. The role of autophagy in cancer including the TME is complex and may differ depending on tumor type or context. In this chapter, recent advances in our understanding of autophagic molecular mechanisms and functions in the TME are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allavena P, Sica A, Garlanda C et al (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    PubMed  CAS  Google Scholar 

  • Amaravadi RK, Lippincott-Schwartz J, Yin XM et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666

    PubMed  CAS  Google Scholar 

  • Anderberg C, Pietras K (2009) On the origin of cancer-associated fibroblasts. Cell Cycle 8:1461–1462

    PubMed  CAS  Google Scholar 

  • Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162

    PubMed  CAS  Google Scholar 

  • Araki K, Turner AP, Shaffer VO et al (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112

    PubMed  CAS  Google Scholar 

  • Ayna G, Krysko DV, Kaczmarek A et al (2012) ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS One 7:e40069

    PubMed  CAS  Google Scholar 

  • Baetz D, Regula KM, Ens K et al (2005) Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation 112:3777–3785

    PubMed  CAS  Google Scholar 

  • Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    PubMed  CAS  Google Scholar 

  • Bellone G, Carbone A, Smirne C et al (2006) Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 177:3448–3460

    PubMed  CAS  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    PubMed  CAS  Google Scholar 

  • Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12:715–723

    PubMed  CAS  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    PubMed  CAS  Google Scholar 

  • Biswas D, Qureshi OS, Lee WY et al (2008) ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol 9:35

    PubMed  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    PubMed  Google Scholar 

  • Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257

    PubMed  CAS  Google Scholar 

  • Bollrath J, Phesse TJ, von Burstin VA et al (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15:91–102

    PubMed  CAS  Google Scholar 

  • Bronte V, Wang M, Overwijk WW et al (1998) Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161:5313–5320

    PubMed  CAS  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    PubMed  CAS  Google Scholar 

  • Buchser WJ, Laskow TC, Pavlik PJ et al (2012) Cell-mediated autophagy promotes cancer cell survival. Cancer Res 72:2970–2979

    PubMed  CAS  Google Scholar 

  • Buckley CD, Pilling D, Lord JM et al (2001) Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol 22:199–204

    PubMed  CAS  Google Scholar 

  • Bursch W, Karwan A, Mayer M et al (2008) Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology 254:147–157

    PubMed  CAS  Google Scholar 

  • Castello-Cros R, Whitaker-Menezes D, Molchansky A et al (2011) Scleroderma-like properties of skin from caveolin-1-deficient mice: implications for new treatment strategies in patients with fibrosis and systemic sclerosis. Cell Cycle 10:2140–2150

    PubMed  CAS  Google Scholar 

  • Chang HY, Chi JT, Dudoit S et al (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99:12877–12882

    PubMed  CAS  Google Scholar 

  • Chaturvedi A, Dorward D, Pierce SK (2008) The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28:799–809

    PubMed  CAS  Google Scholar 

  • Chi SG, Ha TK, Her NG et al (2012) Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res 72(16):4097–4109

    PubMed  Google Scholar 

  • Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497

    PubMed  CAS  Google Scholar 

  • Colleran A, Ryan A, O’Gorman A et al (2011) Autophagosomal IkappaB alpha degradation plays a role in the long term control of tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-kappaB) activity. J Biol Chem 286:22886–22893

    PubMed  CAS  Google Scholar 

  • Comb WC, Cogswell P, Sitcheran R et al (2011) IKK-dependent, NF-kappaB-independent control of autophagic gene expression. Oncogene 30:1727–1732

    PubMed  CAS  Google Scholar 

  • Copetti T, Bertoli C, Dalla E et al (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29:2594–2608

    PubMed  CAS  Google Scholar 

  • Criollo A, Senovilla L, Authier H et al (2010) The IKK complex contributes to the induction of autophagy. EMBO J 29:619–631

    PubMed  CAS  Google Scholar 

  • Criollo A, Niso-Santano M, Malik SA et al (2011) Inhibition of autophagy by TAB2 and TAB3. EMBO J 30:4908–4920

    PubMed  CAS  Google Scholar 

  • Criollo A, Chereau F, Malik SA et al (2012) Autophagy is required for the activation of NFkappaB. Cell Cycle 11:194–199

    PubMed  CAS  Google Scholar 

  • Dalton DK, Noelle RJ (2012) The roles of mast cells in anticancer immunity. Cancer Immunol Immunother 61:1511–1520

    PubMed  CAS  Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    PubMed  CAS  Google Scholar 

  • Delk NA, Farach-Carson MC (2012) Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells. Autophagy 8(4):650–663

    PubMed  CAS  Google Scholar 

  • Demaria S, Pikarsky E, Karin M et al (2010) Cancer and inflammation: promise for biologic therapy. J Immunother 33:335–351

    PubMed  Google Scholar 

  • Deretic V (2005) Autophagy in innate and adaptive immunity. Trends Immunol 26:523–528

    PubMed  CAS  Google Scholar 

  • Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549

    PubMed  CAS  Google Scholar 

  • Dorfel D, Appel S, Grunebach F et al (2005) Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 105:3199–3205

    PubMed  Google Scholar 

  • Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22

    PubMed  CAS  Google Scholar 

  • Dupont N, Jiang S, Pilli M et al (2011a) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30:4701–4711

    PubMed  CAS  Google Scholar 

  • Dupont N, Jiang S, Pilli M et al (2011b) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. Embo J 30:4701–4711

    PubMed  CAS  Google Scholar 

  • Dutta RK, Kathania M, Raje M et al (2012) IL-6 inhibits IFN-gamma induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int J Biochem Cell Biol 44:942–954

    PubMed  CAS  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    PubMed  CAS  Google Scholar 

  • Flavell SJ, Hou TZ, Lax S et al (2008) Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol 153(Suppl 1):S241–S246

    PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    PubMed  CAS  Google Scholar 

  • Gaggioli C, Hooper S, Hidalgo-Carcedo C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    PubMed  CAS  Google Scholar 

  • Gao X, Zhu Y, Li G et al (2012) TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One 7:e30676

    PubMed  CAS  Google Scholar 

  • Ghavami S, Eshragi M, Ande SR et al (2010) S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res 20:314–331

    PubMed  CAS  Google Scholar 

  • Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416

    PubMed  CAS  Google Scholar 

  • Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    PubMed  CAS  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Harris J (2011) Autophagy and cytokines. Cytokine 56:140–144

    PubMed  CAS  Google Scholar 

  • Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66:9349–9351

    PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    PubMed  CAS  Google Scholar 

  • Hu YL, DeLay M, Jahangiri A et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783

    PubMed  CAS  Google Scholar 

  • Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279

    PubMed  CAS  Google Scholar 

  • Huang J, Ni J, Liu K et al (2012) HMGB1 promotes drug resistance in osteosarcoma. Cancer Res 72:230–238

    PubMed  CAS  Google Scholar 

  • Ireland JM, Unanue ER (2011) Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med 208:2625–2632

    PubMed  CAS  Google Scholar 

  • Jagannath C, Lindsey DR, Dhandayuthapani S et al (2009) Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15:267–276

    PubMed  CAS  Google Scholar 

  • Janku F, McConkey DJ, Hong DS et al (2011) Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 8:528–539

    PubMed  CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    PubMed  CAS  Google Scholar 

  • Kang R, Tang D (2012) Autophagy in pancreatic cancer pathogenesis and treatment. Am J Cancer Res 2:383–396

    PubMed  CAS  Google Scholar 

  • Kang R, Zeh HJ, Lotze MT et al (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    PubMed  CAS  Google Scholar 

  • Kang R, Loux T, Tang D et al (2012a) The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc Natl Acad Sci USA 109:7031–7036

    PubMed  CAS  Google Scholar 

  • Kang R, Tang D, Lotze MT et al (2012b) AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy 8(6):989–991

    PubMed  CAS  Google Scholar 

  • Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    PubMed  CAS  Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472

    PubMed  CAS  Google Scholar 

  • Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72:3125–3130

    PubMed  CAS  Google Scholar 

  • Kim JE, You DJ, Lee C et al (2010) Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation. Cell Signal 22:1645–1654

    PubMed  CAS  Google Scholar 

  • Kim J, Kundu M, Viollet B et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    PubMed  CAS  Google Scholar 

  • Kirkin V, Lamark T, Sou YS et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    PubMed  CAS  Google Scholar 

  • Kortylewski M, Xin H, Kujawski M et al (2009) Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15:114–123

    PubMed  CAS  Google Scholar 

  • Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    PubMed  CAS  Google Scholar 

  • Lesina M, Kurkowski MU, Ludes K et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19:456–469

    PubMed  CAS  Google Scholar 

  • Levine B (2003) Autophagy in development, tumor suppression, and innate immunity. Harvey Lect 99:47–76

    PubMed  Google Scholar 

  • Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    PubMed  CAS  Google Scholar 

  • Li C, Capan E, Zhao Y et al (2006) Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol 177:5163–5168

    PubMed  CAS  Google Scholar 

  • Li Y, Wang LX, Yang G et al (2008) Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68:6889–6895

    PubMed  CAS  Google Scholar 

  • Li Y, Wang LX, Pang P et al (2011) Tumor-derived autophagosome vaccine: mechanism of cross-­presentation and therapeutic efficacy. Clin Cancer Res 17:7047–7057

    PubMed  CAS  Google Scholar 

  • Li Y, Hahn T, Garrison K et al (2012) The vitamin E analogue alpha-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res 72:3535–3545

    PubMed  CAS  Google Scholar 

  • Liang X, De Vera ME, Buchser WJ et al (2012) Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res 72:2791–2801

    PubMed  CAS  Google Scholar 

  • Liu L, Yang M, Kang R et al (2011) HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia 25:23–31

    PubMed  Google Scholar 

  • Livesey K, Kang R, Vernon P et al (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 72:1996–2005

    PubMed  CAS  Google Scholar 

  • Lotfi R, Lee JJ, Lotze MT (2007) Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother 30:16–28

    PubMed  CAS  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    PubMed  CAS  Google Scholar 

  • Lotze MT, Line BR, Mathisen DJ et al (1980) The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): implications for the adoptive immunotherapy of tumors. J Immunol 125:1487–1493

    PubMed  CAS  Google Scholar 

  • Lu LF, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    PubMed  CAS  Google Scholar 

  • Mantovani A, Savino B, Locati M et al (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21:27–39

    PubMed  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D et al (2010) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 9:2423–2433

    PubMed  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z et al (2011) Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle 10:1784–1793

    PubMed  CAS  Google Scholar 

  • Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    PubMed  CAS  Google Scholar 

  • Matta BM, Castellaneta A, Thomson AW (2010) Tolerogenic plasmacytoid DC. Eur J Immunol 40:2667–2676

    PubMed  CAS  Google Scholar 

  • Maugeri N, Franchini S, Campana L et al (2012) Circulating platelets as a source of the damage-­associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity 45(8):584–587

    PubMed  CAS  Google Scholar 

  • Mbeunkui F, Johann DJ Jr (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571–582

    PubMed  Google Scholar 

  • Michaud M, Martins I, Sukkurwala AQ et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577

    PubMed  CAS  Google Scholar 

  • Mihalache CC, Simon HU (2012) Autophagy regulation in macrophages and neutrophils. Exp Cell Res 318:1187–1192

    PubMed  CAS  Google Scholar 

  • Miller BC, Zhao Z, Stephenson LM et al (2008) The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4:309–314

    PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    PubMed  CAS  Google Scholar 

  • Morris S, Swanson MS, Lieberman A et al (2011) Autophagy-mediated dendritic cell activation is essential for innate cytokine production and APC function with respiratory syncytial virus responses. J Immunol 187:3953–3961

    PubMed  CAS  Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VA et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    PubMed  CAS  Google Scholar 

  • Nazarko VY, Nazarko TY, Farre JC et al (2011) Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 7:375–385

    PubMed  CAS  Google Scholar 

  • Niida M, Tanaka M, Kamitani T (2010) Downregulation of active IKK beta by Ro52-mediated autophagy. Mol Immunol 47:2378–2387

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Milosevic S, Behrends U et al (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33:1250–1259

    PubMed  CAS  Google Scholar 

  • Noman MZ, Janji B, Kaminska B et al (2011) Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 71:5976–5986

    PubMed  CAS  Google Scholar 

  • Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708

    PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    PubMed  CAS  Google Scholar 

  • Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277

    PubMed  CAS  Google Scholar 

  • Papa S, Bubici C, Zazzeroni F et al (2006) The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13:712–729

    PubMed  CAS  Google Scholar 

  • Papandreou I, Lim AL, Laderoute K et al (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15:1572–1581

    PubMed  CAS  Google Scholar 

  • Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    PubMed  CAS  Google Scholar 

  • Pavlides S, Whitaker-Menezes D, Castello-Cros R et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    PubMed  CAS  Google Scholar 

  • Pavlides S, Vera I, Gandara R et al (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16:1264–1284

    PubMed  CAS  Google Scholar 

  • Pua HH, Dzhagalov I, Chuck M et al (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31

    PubMed  CAS  Google Scholar 

  • Qian C, Liu XY, Prieto J (2006) Therapy of cancer by cytokines mediated by gene therapy approach. Cell Res 16:182–188

    PubMed  CAS  Google Scholar 

  • Qing G, Yan P, Xiao G (2006) Hsp90 inhibition results in autophagy-mediated proteasome-­independent degradation of IkappaB kinase (IKK). Cell Res 16:895–901

    PubMed  CAS  Google Scholar 

  • Qing G, Yan P, Qu Z et al (2007) Hsp90 regulates processing of NF-kappa B2 p100 involving protection of NF-kappa B-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res 17:520–530

    PubMed  CAS  Google Scholar 

  • Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316:2713–2722

    PubMed  Google Scholar 

  • Rausch V, Liu L, Apel A et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227(3):325–335

    PubMed  CAS  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    PubMed  CAS  Google Scholar 

  • Rinn JL, Bondre C, Gladstone HB et al (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet 2:e119

    PubMed  Google Scholar 

  • Rinn JL, Wang JK, Liu H et al (2008) A systems biology approach to anatomic diversity of skin. J Invest Dermatol 128:776–782

    PubMed  CAS  Google Scholar 

  • Roca H, Varsos ZS, Sud S et al (2009) CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284:34342–34354

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Lotze MT, Yang JC et al (1993) Prospective randomized trial of high-dose interleukin-­2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85:622–632

    PubMed  CAS  Google Scholar 

  • Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-­induced IL-1beta production. Nature 456:264–268

    PubMed  CAS  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235

    PubMed  CAS  Google Scholar 

  • Sanjuan MA, Dillon CP, Tait SW et al (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257

    PubMed  CAS  Google Scholar 

  • Sarkar S, Ravikumar B, Floto RA et al (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16:46–56

    PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    PubMed  CAS  Google Scholar 

  • Schiraldi M, Raucci A, Munoz LM et al (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209:551–563

    PubMed  CAS  Google Scholar 

  • Shin DM, Jeon BY, Lee HM et al (2010) Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 6:e1001230

    PubMed  CAS  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    PubMed  Google Scholar 

  • Silberstein DS, Schoof DD, Rodrick ML et al (1989) Activation of eosinophils in cancer patients treated with IL-2 and IL-2-generated lymphokine-activated killer cells. J Immunol 142:2162–2167

    PubMed  CAS  Google Scholar 

  • Sotgia F, Martinez-Outschoorn UE, Howell A et al (2012) Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467

    PubMed  CAS  Google Scholar 

  • Spano D, Zollo M (2012) Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 29:381–395

    PubMed  CAS  Google Scholar 

  • Stahl N, Farruggella TJ, Boulton TG et al (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267:1349–1353

    PubMed  CAS  Google Scholar 

  • Takenouchi T, Nakai M, Iwamaru Y et al (2009) The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J Immunol 182:2051–2062

    PubMed  CAS  Google Scholar 

  • Tang D, Lotze MT (2012a) Tumor immunity times out: TIM-3 and HMGB1. Nat Immunol 13:808–810

    PubMed  CAS  Google Scholar 

  • Tang S, Lotze MT (2012b) The power of negative thinking: which cells limit tumor immunity? Clin Cancer Res 18(19):5157–5159

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Cheh CW et al (2010a) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Livesey KM et al (2010b) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Zeh HJ 3rd et al (2010c) High-mobility group box 1 and cancer. Biochim Biophys Acta 1799:131–140

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Livesey KM et al (2011a) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 13:701–711

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Zeh HJ 3rd et al (2011b) High-mobility group box 1, oxidative stress, and ­disease. Antioxid Redox Signal 14:1315–1335

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Coyne CB et al (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249(1):158–175

    PubMed  CAS  Google Scholar 

  • Thurston TL, Ryzhakov G, Bloor S et al (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10:1215–1221

    PubMed  CAS  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    PubMed  CAS  Google Scholar 

  • Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12:831–835

    PubMed  CAS  Google Scholar 

  • Tracy K, Dibling BC, Spike BT et al (2007) BNIP3 is an RB/E2F target gene required for hypoxia-­induced autophagy. Mol Cell Biol 27:6229–6242

    PubMed  CAS  Google Scholar 

  • Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-kappaB signaling pathways in cancer cells. Am J Cancer Res 1:629–649

    PubMed  CAS  Google Scholar 

  • Tsung A, Sahai R, Tanaka H et al (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135–1143

    PubMed  CAS  Google Scholar 

  • Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648

    PubMed  CAS  Google Scholar 

  • Vernon P, Tang D (2013) Eat-me: autophagy, phagocytosis, and ROS signaling. Antioxid Redox Signal 18(6):677–691

    Google Scholar 

  • Virgin HW, Levine B (2009) Autophagy genes in immunity. Nat Immunol 10:461–470

    PubMed  CAS  Google Scholar 

  • Wang H, Bloom O, Zhang M et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  • Wei H, Wei S, Gan B et al (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25:1510–1527

    PubMed  CAS  Google Scholar 

  • Weiner LM, Lotze MT (2012) Tumor-cell death, autophagy, and immunity. N Engl J Med 366:1156–1158

    PubMed  CAS  Google Scholar 

  • Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250

    PubMed  CAS  Google Scholar 

  • White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410

    PubMed  CAS  Google Scholar 

  • Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912

    PubMed  CAS  Google Scholar 

  • Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233

    PubMed  CAS  Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410

    PubMed  CAS  Google Scholar 

  • Witkiewicz AK, Kline J, Queenan M et al (2011) Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 10:1794–1809

    PubMed  CAS  Google Scholar 

  • Xu Y, Jagannath C, Liu XD et al (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27:135–144

    PubMed  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    PubMed  CAS  Google Scholar 

  • Yang G, Truong LD, Timme TL et al (1998) Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 4:1873–1880

    PubMed  CAS  Google Scholar 

  • Yoon S, Woo SU, Kang JH et al (2010) STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy 6:1125–1138

    PubMed  CAS  Google Scholar 

  • Yu H, Jove R (2004) The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4:97–105

    PubMed  CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    PubMed  CAS  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    PubMed  CAS  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daolin Tang or Michael T. Lotze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tang, D., Lotze, M.T. (2013). Autophagy and the Tumor Microenvironment. In: Wang, HG. (eds) Autophagy and Cancer. Current Cancer Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6561-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6561-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6560-7

  • Online ISBN: 978-1-4614-6561-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics