Skip to main content

Selective Autophagy and Cancer

  • Chapter
  • First Online:
Autophagy and Cancer

Part of the book series: Current Cancer Research ((CUCR,volume 8))

  • 1982 Accesses

Abstract

In normal cells, autophagy prevents tumorigenesis through selective cleanup of damaged organelles and certain specific proteins such as p62. In contrast, autophagy provides tumor cells, which require enormous amounts of nutrients, with amino acids, fatty acids, and glucose. Therefore, autophagy represents something of a double-edged sword in cancer: it functions as a tumor suppressor, but can also satisfy metabolic demands once tumors are established. In this chapter, we review the tumor-suppressive and oncogenic effects of autophagy which have been characterized using several approaches including transgenic mice and introduce the involvement of selective autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H et al (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20:524–537

    Article  PubMed  CAS  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    Article  PubMed  CAS  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al (2011) Oncogene-­induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    Article  PubMed  CAS  Google Scholar 

  • Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT et al (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13:343–354

    Article  PubMed  CAS  Google Scholar 

  • Elgendy M, Sheridan C, Brumatti G (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42:23–35

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008a) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T et al (2008b) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19:4651–4659

    Article  PubMed  CAS  Google Scholar 

  • Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188

    Article  PubMed  CAS  Google Scholar 

  • Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    PubMed  CAS  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  PubMed  CAS  Google Scholar 

  • Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275–284

    Article  PubMed  CAS  Google Scholar 

  • Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372

    Article  PubMed  CAS  Google Scholar 

  • Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I et al (2006) Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 281:4035–4041

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735

    Article  PubMed  CAS  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S et al (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–1635

    Article  PubMed  CAS  Google Scholar 

  • Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ et al (2011) Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab 14:173–183

    Article  PubMed  CAS  Google Scholar 

  • Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010

    Article  PubMed  CAS  Google Scholar 

  • Kinch L, Grishin NV, Brugarolas J (2011) Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2. Cancer Cell 20:418–420

    Article  PubMed  CAS  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Ichimura Y (2010) Selective autophagy regulates various cellular functions. Genes Cells 15:923–933

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I et al (2005) Impairment of starvation-­induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    PubMed  CAS  Google Scholar 

  • Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N et al (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336:225–228

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA et al (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10:776–787

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z et al (2012) KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21:105–120

    Article  PubMed  CAS  Google Scholar 

  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075

    Article  PubMed  CAS  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T et al (2010) Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 190:511–521

    Article  PubMed  CAS  Google Scholar 

  • Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E et al (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5(27):ra24

    Article  PubMed  Google Scholar 

  • Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H et al (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T et al (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J Cell Sci 116:1679–1688

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  PubMed  CAS  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    Article  PubMed  CAS  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  Google Scholar 

  • Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820

    PubMed  CAS  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235

    Article  PubMed  CAS  Google Scholar 

  • Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505

    Article  PubMed  CAS  Google Scholar 

  • Sheen JH, Zoncu R, Kim D, Sabatini DM (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19:613–628

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775

    Article  PubMed  CAS  Google Scholar 

  • Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–140

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al (2011) Autophagy-­deficient mice develop multiple liver tumors. Genes Dev 25:795–800

    Article  PubMed  CAS  Google Scholar 

  • Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    Article  PubMed  CAS  Google Scholar 

  • Warren JR, Lalwani ND, Reddy JK (1982) Phthalate esters as peroxisome proliferator carcinogens. Environ Health Perspect 45:35–40

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688

    Article  PubMed  CAS  Google Scholar 

  • Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  PubMed  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    Article  PubMed  CAS  Google Scholar 

  • Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L et al (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, Miller BC et al (2008) Autophagosome-­independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4:458–469

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT et al (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. S. Kageyama (Tokyo Metropolitan Institute of Medical Science) for illustrating figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshinobu Ichimura or Masaaki Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ichimura, Y., Komatsu, M. (2013). Selective Autophagy and Cancer. In: Wang, HG. (eds) Autophagy and Cancer. Current Cancer Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6561-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6561-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6560-7

  • Online ISBN: 978-1-4614-6561-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics