Skip to main content

The Core Molecular Machinery of Autophagosome Formation

  • Chapter
  • First Online:
Autophagy and Cancer

Part of the book series: Current Cancer Research ((CUCR,volume 8))

Abstract

Autophagy is a conserved cytoplasmic process from yeast to mammals, by which cells degrade and recycle their intracellular components. During macroautophagy, a unique compartment, named the autophagosome, is formed to engulf the cargos and send them to the vacuole or lysosome. Whether the cargos are nonspecifically sequestered, as occurs in most types of macroautophagy, or specifically selected, such as in the cytoplasm-to-vacuole targeting pathway or selective mitochondria degradation, a common set of molecular machinery is required for the formation of the autophagosome. In this chapter, we summarize our knowledge about the roles and regulation of these core machinery components in autophagosome formation, in both yeast and mammalian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeliovich H et al (2003) Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Biol Cell 14:477–490

    Article  PubMed  CAS  Google Scholar 

  • Axe EL et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    Article  PubMed  CAS  Google Scholar 

  • Baskaran S et al (2012) Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell 47:339–348

    Article  PubMed  CAS  Google Scholar 

  • Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2:pe51

    Article  PubMed  Google Scholar 

  • Chan EYW, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282:25464–25474

    Article  PubMed  CAS  Google Scholar 

  • Chang CY, Huang W-P (2007) Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol Biol Cell 18:919–929

    Article  PubMed  CAS  Google Scholar 

  • Cheong H et al (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16:3438–3453

    Article  PubMed  CAS  Google Scholar 

  • Cheong H et al (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19:668–681

    Article  PubMed  CAS  Google Scholar 

  • Fimia GM et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125

    PubMed  CAS  Google Scholar 

  • Fujita N et al (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100 Fujioka Y et al (2010) Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem 285:1508–1515

    Article  PubMed  CAS  Google Scholar 

  • Furuya N et al (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46–52

    Article  PubMed  CAS  Google Scholar 

  • Furuya T et al (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38:500–511

    Article  PubMed  CAS  Google Scholar 

  • Ganley IG et al (2009) ULK1 · ATG13 · FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305

    Article  PubMed  CAS  Google Scholar 

  • Guan J et al (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12:3821–3838

    PubMed  CAS  Google Scholar 

  • Hanada T et al (2007) The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    Article  PubMed  CAS  Google Scholar 

  • Hara T et al (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510

    Article  PubMed  CAS  Google Scholar 

  • Harding TM et al (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602

    Article  PubMed  CAS  Google Scholar 

  • He C et al (2006) Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175:925–935

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa N et al (2009a) Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa N et al (2009b) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–979

    Article  PubMed  CAS  Google Scholar 

  • Huang W-P et al (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275:5845–5851

    Article  PubMed  CAS  Google Scholar 

  • Huang W et al (2012) Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res 22:473–489

    Article  PubMed  CAS  Google Scholar 

  • Ichimura Y et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  PubMed  CAS  Google Scholar 

  • Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776

    Article  PubMed  CAS  Google Scholar 

  • Itakura E et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372

    Article  PubMed  CAS  Google Scholar 

  • Juhasz G et al (2008) The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 181:655–666

    Article  PubMed  CAS  Google Scholar 

  • Jung CH et al (2009) ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y et al (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y et al (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16:2544–2553

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y et al (2007) Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 356:405–410

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y et al (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S et al (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast Saccharomyces cerevisiae. J Biol Chem 273:22284–22291

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T et al (2005) Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 338:1884–1889

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T et al (2008) Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19:2039–2050

    Article  PubMed  CAS  Google Scholar 

  • Kihara A et al (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    Article  PubMed  CAS  Google Scholar 

  • Kirisako T et al (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Suzuki K, Ohsumi Y (2012) Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett 586:2473–2478

    Article  PubMed  CAS  Google Scholar 

  • Krick R et al (2012) Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci USA 109:E2042–E2049

    Article  PubMed  CAS  Google Scholar 

  • Kuma A et al (2002) Formation of the approximately 350-kDa Apg12–Apg5–Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277:18619–18625

    Article  PubMed  CAS  Google Scholar 

  • Kundu M et al (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Legakis JE, Yen W-L, Klionsky DJ (2007) A cycling protein complex required for selective autophagy. Autophagy 3:422–432

    PubMed  CAS  Google Scholar 

  • Li M et al (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 286:7327–7338

    Article  PubMed  CAS  Google Scholar 

  • Liang XH et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  • Liang C et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    Article  PubMed  CAS  Google Scholar 

  • Lin SY et al (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336:477–481

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga K et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    Article  PubMed  CAS  Google Scholar 

  • Matsuura A et al (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192:245–250

    Article  PubMed  CAS  Google Scholar 

  • Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2002) Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method. FEBS Lett 532:450–454

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N et al (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J Cell Sci 116:1679–1688

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  PubMed  CAS  Google Scholar 

  • Monastyrska I et al (2008) Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19:1962–1975

    Article  PubMed  CAS  Google Scholar 

  • Nair U et al (2012) A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8(5):780–793

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H et al (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  PubMed  CAS  Google Scholar 

  • Nice DC et al (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277:30198–30207

    Article  PubMed  CAS  Google Scholar 

  • Noda T et al (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465–480

    Article  PubMed  CAS  Google Scholar 

  • Obara K, Sekito T, Ohsumi Y (2006) Assortment of phosphatidylinositol 3-kinase complexes–Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17:1527–1539

    Article  PubMed  CAS  Google Scholar 

  • Obara K et al (2008) Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells 13:537–547

    Article  PubMed  CAS  Google Scholar 

  • Orsi A et al (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23:1860–1873

    Article  PubMed  CAS  Google Scholar 

  • Petiot A et al (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  PubMed  CAS  Google Scholar 

  • Polson HE et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6:506–522

    Google Scholar 

  • Reggiori F et al (2004) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6:79–90

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F et al (2005) Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:101–109

    Article  PubMed  CAS  Google Scholar 

  • Sekito T et al (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14:525–538

    Article  PubMed  CAS  Google Scholar 

  • Shintani T et al (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18:5234–5241

    Article  PubMed  CAS  Google Scholar 

  • Shintani T et al (2001) Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem 276:30452–30460

    Article  PubMed  CAS  Google Scholar 

  • Skwarek LC, Boulianne GL (2009) Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell 16:12–20

    Article  PubMed  CAS  Google Scholar 

  • Stack JH, Emr SD (1994) Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 269:31552–31562

    PubMed  CAS  Google Scholar 

  • Stack JH et al (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204

    PubMed  CAS  Google Scholar 

  • Stack JH et al (1995) Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 129:321–334

    Article  PubMed  CAS  Google Scholar 

  • Straub M, Bredschneider M, Thumm M (1997) AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. J Bacteriol 179:3875–3883

    PubMed  CAS  Google Scholar 

  • Stromhaug PE, Klionsky DJ (2001) Approaching the molecular mechanism of autophagy. Traffic 2:524–531

    Article  PubMed  CAS  Google Scholar 

  • Stromhaug PE et al (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15:3553–3566

    Article  PubMed  CAS  Google Scholar 

  • Sugawara K et al (2004) The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611–618

    Article  PubMed  CAS  Google Scholar 

  • Sun Q et al (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105:19211–19216

    Article  PubMed  CAS  Google Scholar 

  • Suzuki NN et al (2005) The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1:119–126

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K et al (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Tanida I et al (1999) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10:1367–1379

    PubMed  CAS  Google Scholar 

  • Tanida I et al (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-­activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276:1701–1706

    PubMed  CAS  Google Scholar 

  • Tanida I et al (2002) Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 277:13739–13744

    Article  PubMed  CAS  Google Scholar 

  • Tanida I et al (2003) GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochem Biophys Res Commun 300:637–644

    Article  PubMed  CAS  Google Scholar 

  • Tanida I et al (2006) Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 273:2553–2562

    Article  PubMed  CAS  Google Scholar 

  • Thumm M et al (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349:275–280

    Article  PubMed  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  PubMed  CAS  Google Scholar 

  • Tucker KA et al (2003) Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 278:48445–48452

    Article  PubMed  CAS  Google Scholar 

  • Wang C-W et al (2001) Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 276:30442–30451

    Article  PubMed  CAS  Google Scholar 

  • Weidberg H et al (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29:1792–1802

    Article  PubMed  CAS  Google Scholar 

  • Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298

    Article  PubMed  CAS  Google Scholar 

  • Yamada T et al (2005) Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 280:18283–18290

    Article  PubMed  CAS  Google Scholar 

  • Yan Y et al (2009) hVps15, but not Ca2+/CaM, is required for the activity and regulation of hVps34 in mammalian cells. Biochem J 417:747–755

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    Article  PubMed  CAS  Google Scholar 

  • Yeh YY, Wrasman K, Herman PK (2010) Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 185:871–882

    Article  PubMed  CAS  Google Scholar 

  • Yen W-L et al (2007) Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 18:581–593

    Article  PubMed  CAS  Google Scholar 

  • Yorimitsu T et al (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18:4180–4189

    Article  PubMed  CAS  Google Scholar 

  • Young ARJ et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900

    Article  PubMed  CAS  Google Scholar 

  • Yu ZQ et al (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883–892

    PubMed  CAS  Google Scholar 

  • Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-­Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119:259–270

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y et al (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Klionsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jin, M., Klionsky, D.J. (2013). The Core Molecular Machinery of Autophagosome Formation. In: Wang, HG. (eds) Autophagy and Cancer. Current Cancer Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6561-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6561-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6560-7

  • Online ISBN: 978-1-4614-6561-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics